Making use of Newton’s classical shell theorem, the Schwarzschild metric is modified. This removes the singularity at r = 0 for a standard object (not a black hole). It is demonstrated how general relativity evidently leads to quantization of space-time. Both classical and quantum mechanical limits on density give the same result. Based on Planck’s length and the assumption that density must have an upper limit, we conclude that the lower limit of the classical gravitation theory by Einstein is related to the Planck length, which is a quantum phenomenon posed by dimensional analysis of the universal constants. The Ricci tensor is considered under extreme densities (where Kretschmann invariant = 0) and a solution is considered for both outside and inside the object. Therefore, classical relativity and the relationship between the universal constants lead to quantization of space. A gedanken experiment of light passing through an extremely dense object is considered, which will allow for evaluation of the theory.
References
[1]
Brown, K. (2010) Reflections on Relativity. Lulu.com, Morrisville.
[2]
Landau, L.D. and Lifshitz, E.M. (1950) The Classical Theory of Fields. Course of Theoretical Physics. Vol. 2, 4th Revised English, Pergamon Press, Oxford.
[3]
Buchdahl, H.A. (1985) Isotropic Coordinates and Schwarzschild Metric. International Journal of Theoretical Physics, 24, 731-739. https://doi.org/10.1007/BF00670880
[4]
Davie, R. Schwarzschild Metric 1-3. https://www.youtube.com/watch?v=D1mmLjR-szY
[5]
Painlevé, P. (1921) La mécanique classique et la théorie de la relativité. Comptes Rendus de l’Académie des Sciences, 173, 677.
[6]
Lemos, J.P.S. and Silva, D.L.F.G. (2020) Maximal Extension of the Schwarzschild Metric: From Painlevé-Gullstrand to Kruskal-Szekeres. Annals of Physics, 430, Article ID: 168497. https://doi.org/10.1016/j.aop.2021.168497
[7]
Gullstrand, A. (1922) Allgemeine Lösung des statischen Einkörperproblems in der Einsteinschen Gravitationstheorie. Arkiv för Matematik, Astronomi och Fysik, 16, 1.
[8]
Eddington, A.S. (1924) A Comparison of Whitehead’s and Einstein’s Formula. Nature, 113, 192. https://doi.org/10.1038/113192a0
[9]
Finkelstein, D. (1958) Past-Future Asymmetry of the Gravitational Field of a Point Particle. Physical Review, 110, 965-967. https://doi.org/10.1103/PhysRev.110.965
[10]
Lemaître, G. (1933) L’Univers en expansion. Annales de la Société Scientifique de Bruxelles, 53A, 51-83.
[11]
Synge, J. (1950) The Gravitational Field of a Particle. Proceedings of the Royal Irish Academy, Section A: Mathematical and Physical Sciences, 53, 83-114.
[12]
Kruskal, M. (1959) Maximal Extension of Schwarzschild Metric. Physical Review, 119, 1743-1745. https://doi.org/10.1103/PhysRev.119.1743
[13]
Szekeres, G. (1959) On the Singularities of a Riemannian Manifold. Publicationes Mathematicae Debrecen, 7, 285-301.
[14]
Rovelli, C. (2008) Quantum Gravity. Scholarpedia, 3, 7117. https://doi.org/10.4249/scholarpedia.7117
[15]
Gkigkitzis, I., Haranas, I. and Ragos, O. (2014) Kretschmann Invariant and Relations between Spacetime Singularities, Entropy and Information. Physics International, 5, 103-111. https://doi.org/10.3844/pisp.2014.103.111
[16]
Moradi, R., Firouzjaee, J.T. and Mansouri, R. (2015) Cosmological Black Holes: The Spherical Perfect Fluid Collapse with Pressure in a FRW Background. Classical and Quantum Gravity, 32, Article ID: 215001. https://doi.org/10.1088/0264-9381/32/21/215001
[17]
Henry, R.C. (2000) Kretschmann Scalar for a Kerr-Newman Black Hole. The Astrophysical Journal, 535, 350-353. https://doi.org/10.1086/308819
[18]
Newton, I. (1687) Philosophiae Naturalis Principia Mathematica. https://doi.org/10.5479/sil.52126.39088015628399
[19]
Arens, R. (1990) Newton’s Observations about the Field of a Uniform Thin Spherical Shell. Note di Matematica, 10, 39-45.
[20]
Zee, A. (2013) Einstein Gravity in a Nutshell. Princeton University Press, Princeton.
[21]
D’Inverno, R. (1992) Introducing Einstein’s Relativity. Oxford University Press, Oxford.
[22]
Misner, C.W., Thorne, K.S. and Wheeler, J.A. (1975) Gravitation. Freeman and Co., Reading.