Using our recently published electron’s charge electromagnetic flux manifold fiber model of the electron, described by analytical method and numerical simulations, we show how the fine structure constant is embedded as a geometrical proportionality constant in three dimensional space of its charge manifold and how this dictates the first QED term one-loop contribution of its anomalous magnetic moment making for the first time a connection of its intrinsic characteristics with physical geometrical dimensions and therefore demonstrating that the physical electron charge cannot be dimensionless. We show that the fine structure constant (FSC) α, and anomalous magnetic moment αμ of the electron is related to the sphericity of its charge distribution which is not perfectly spherical and thus has a shape, and therefore its self-confined charge possesses measurable physical dimensions. We also explain why these are not yet able to be measured by past and current experiments and how possible we could succeed.
References
[1]
Weinberg, S. (1967) A Model of Leptons. Physical Review Letters, 19, 1264-1266. https://doi.org/10.1103/PhysRevLett.19.1264
[2]
Gaillard, M.K., Grannis, P.D. and Sciulli, F.J. (1999) The Standard Model of Particle Physics. Reviews of Modern Physics, 71, S96-S111. https://doi.org/10.1103/RevModPhys.71.S96
[3]
Atiyah, M. and Sutcliffe, P. (2002) The Geometry of Point Particles. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 458, 1089-1115. https://doi.org/10.1098/rspa.2001.0913
[4]
Felsager, B. (1998) Geometry, Particles, and Fields. Springer, New York.
[5]
Markoulakis, E. and Antonidakis, E. (2022) A ½ Spin Fiber Model for the Electron. International Journal of Physical Research, 10, 1-17. https://doi.org/10.14419/ijpr.v10i1.31874
[6]
Markoulakis, E., Konstantaras, A., Chatzakis, J., Iyer, R. and Antonidakis, E. (2019) Real Time Observation of a Stationary Magneton. Results in Physics, 15, Article ID: 102793. https://doi.org/10.1016/j.rinp.2019.102793
[7]
Markoulakis, E., Chatzakis, J., Konstantaras, A. and Antonidakis, E. (2020) A Synthetic Macroscopic Magnetic Unipole. Physica Scripta, 95, Article ID: 095811. https://doi.org/10.1088/1402-4896/abaf8f
[8]
Markoulakis, E., Vanderelli, T. and Frantzeskakis, L. (2022) Real Time Display with the Ferrolens of Homogeneous Magnetic Fields. Journal of Magnetism and Magnetic Materials, 541, Article ID: 168576. https://doi.org/10.1016/j.jmmm.2021.168576
[9]
Dirac, P.A.M. (1931) Quantised Singularities in the Electromagnetic Field. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 133, 60-72. https://doi.org/10.1098/rspa.1931.0130
[10]
Stefanovich, E.V. (2001) Quantum Field Theory without Infinities. Annals of Physics, 292, 139-156. https://doi.org/10.1006/aphy.2001.6175
[11]
Ginzburg, V.L. (2001) The Physics of a Lifetime: Reflections on the Problems and Personalities of 20th Century Physics. Springer, Berlin, Heidelberg, 513 p. https://doi.org/10.1007/978-3-662-04455-1
[12]
Andreev, V., Ang, D.G., DeMille, D., Doyle, J.M., Gabrielse, G., Haefner, J., Hutzler, N.R., Lasner, Z., Meisenhelder, C., O’Leary, B.R., Panda, C.D., West, A.D., West, E.P. and Wu, X. (2018) Improved Limit on the Electric Dipole Moment of the Electron. Nature, 562, 355-360. https://doi.org/10.1038/s41586-018-0599-8
[13]
Aggarwal, P., Bethlem, H.L., Borschevsky, A., Denis, M., Esajas, K., Haase, P.A.B., Hao, Y., Hoekstra, S., Jungmann, K., Meijknecht, T.B., Mooij, M.C., Timmermans, R.G.E., Ubachs, W., Willmann, L. and Zapara, A. (2018) Measuring the Electric Dipole Moment of the Electron in BaF. The European Physical Journal D, 72, Article No. 197. https://doi.org/10.1140/epjd/e2018-90192-9
[14]
Cairncross, W.B., Gresh, D.N., Grau, M., Cossel, K.C., Roussy, T.S., Ni, Y., Zhou, Y., Ye, J. and Cornell, E.A. (2017) Precision Measurement of the Electron’s Electric Dipole Moment Using Trapped Molecular Ions. Physical Review Letters, 119, Article ID: 153001. https://doi.org/10.1103/PhysRevLett.119.153001
[15]
Hanneke, D., Hoogerheide, S.F. and Gabrielse, G. (2011) Cavity Control of a Single-Electron Quantum Cyclotron: Measuring the Electron Magnetic Moment. Physical Review A, 83, Article ID: 052122. https://doi.org/10.1103/PhysRevA.83.052122
[16]
Hanneke, D., Fogwell, S. and Gabrielse, G. (2008) New Measurement of the Electron Magnetic Moment and the Fine Structure Constant. Physical Review Letters, 100, Article ID: 120801. https://doi.org/10.1103/PhysRevLett.100.120801
[17]
Odom, B., Hanneke, D., D’urso, B. and Gabrielse, G. (2006) New Measurement of the Electron Magnetic Moment Using a One-Electron Quantum Cyclotron. Physical Review Letters, 97, Article ID: 030801. https://doi.org/10.1103/PhysRevLett.97.030801
[18]
Bourilkov, D. (2001) Hint for Axial-Vector Contact Interactions in the Data on [Formula Presented] at Center-of-Mass Energies 192 - 208 GeV. Physical Review D, 64, Article ID: 071701. https://doi.org/10.1103/PhysRevD.64.071701
[19]
Jennison, R.C. (1989) A New Classical Relativistic Model of the Electron. Physics Letters A, 141, 377-382. https://doi.org/10.1016/0375-9601(89)90852-9
[20]
Williamson, J.G. and Van Der Mark, M.B. (1997) Is the Electron a Photon with Toroidal Topology? Annales de la Fondation Louis de Broglie, 22, 133-160.
[21]
Nader, B., Dgania, P. and Tikva, I. (2021) A New Theory for the Essence and Nature of Electron Charge. Journal of High Energy Physics, Gravitation and Cosmology, 7, 1190-1201. https://doi.org/10.4236/jhepgc.2021.73070
[22]
Consa, O. (2018) Helical Solenoid Model of the Electron. Progress in Physics, 14, 80-89.
[23]
Storti, R.C. and Desiato, T.J. (2009) Derivation of Fundamental Particle Radii: Electron, Proton, and Neutron. Physics Essays, 22, 27-32. https://doi.org/10.4006/1.3062144
[24]
Otto, H.H. (2022) Golden Quartic Polynomial and Moebius-Ball Electron. Journal of Applied Mathematics and Physics, 10, 1785-1812. https://doi.org/10.4236/jamp.2022.105124
Mac Gregor, M.H. (2014) The Enigmatic Electron. Springer, Dordrecht.
[27]
Compton, A.H. (1919) The Size and Shape of the Electron. Physical Review, 14, 20-43. https://doi.org/10.1103/PhysRev.14.20
[28]
Sommerfeld, A. (1916) Zur Quantentheorie der Spektrallinien. Annalen der Physik, 356, 125-167. https://doi.org/10.1002/andp.19163561802
[29]
Weinberg, S. (2005) The Quantum Theory of Fields. Vol. 1: Foundations. Cambridge University Press, Cambridge.
[30]
Schwinger, J. (1948) On Quantum-Electrodynamics and the Magnetic Moment of the Electron. Physical Review, 73, 416-417. https://doi.org/10.1103/PhysRev.73.416
[31]
Pospelov, M. and Ritz, A. (2005) Electric Dipole Moments as Probes of New Physics. Annals of Physics, 318, 119-169. https://doi.org/10.1016/j.aop.2005.04.002
[32]
Hughes, C.W. and Miller, P.I. (2017) Rapid Water Transport by Long-Lasting Modon Eddy Pairs in the Southern Midlatitude Oceans. Geophysical Research Letters, 44, 12375-12384. https://doi.org/10.1002/2017GL075198
[33]
Kusch, P. and Foley, H.M. (1948) The Magnetic Moment of the Electron. Physical Review, 74, 250-263. https://doi.org/10.1103/PhysRev.74.250
[34]
Straser, V. (2021) Calculation of G Gravity Constant from the Mass and Electron Charge, and Fine Structure Constant. Journal of Modern Physics, 12, 1172-1181. https://doi.org/10.4236/jmp.2021.128071