全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Heuristic Approach to the Far-Future State of a Universe Dominated by Phantom Energy

DOI: 10.4236/jhepgc.2022.84066, PP. 948-959

Keywords: Dark Energy, Phantom Energy, Schwinger Effect, Cyclic Universe

Full-Text   Cite this paper   Add to My Lib

Abstract:

This work is based on a cosmological scenario of a universe dominated by phantom energy with equation of state parameter w﹤-1 and the analysis of its asymptotic behaviour in the far-future. The author discusses whether a Big Rip singularity could be reached in the future. Working in the context of general relativity, it is argued that the Big Rip singularity could be avoided due to the gravitational Schwinger pair-production, even if no other particle-creating contribution takes place. In this model, the universe is described in its far-future by a state of a constant but large Hubble rate and energy density, as well as of a constant but low horizon entropy. Similar conditions existed at the beginning of the universe. Therefore, according to this analysis, not only the Big Rip singularity could be avoided in the far-future but also the universe could asymptotically be led to a new inflationary phase, after which more and more universes could be created.

References

[1]  Perlmutter, S., et al. (1999) Measurements of Ω and Λ from 42 High-Redshift Supernovae. The Astrophysical Journal, 517, 565-586.
[2]  Riess, A.G., et al. (1998) Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. The Astronomical Journal, 116, 1009-1038.
https://doi.org/10.1086/300499
[3]  Aghanim, N., et al. (2020) Planck 2018 Results: VI. Cosmological Parameters. Astronomy & Astrophysics, 641, Article No. E1.
https://doi.org/10.1051/0004-6361/202039265
[4]  Dubovsky, S., Grégoire, T., Nicolis, A. and Rattazzi, R. (2006) Null Energy Condition and Superluminal Propagation. Journal of High Energy Physics, 2006, Article No. 025.
https://doi.org/10.1088/1126-6708/2006/03/025
[5]  Creminelli, P., Luty, M.A., Nicolis, A. and Senatore, L. (2006) Starting the Universe: Stable Violation of the Null Energy Condition and Non-Standard Cosmologies. Journal of High Energy Physics, 2006, Article No. 080.
https://doi.org/10.1088/1126-6708/2006/12/080
[6]  Aghanim, N., et al. (2021) Planck 2018 Results-VI. Cosmological Parameters. Astronomy & Astrophysics, arXiv: 1807.06209.
https://arxiv.org/pdf/1807.06209.pdf
[7]  Abbott, T.M.C., et al. (2021) Dark Energy Survey Year 3 Results: Cosmological Constraints from Galaxy Clustering and Weak Lensing. Cosmology and Nongalactic Astrophysics, arXiv: 2105.13549.
https://arxiv.org/abs/2105.13549
[8]  Caldwell, R.R., Kamionkowski, M. and Weinberg, N.N. (2003) Phantom Energy: Dark Energy with Causes a Cosmic Doomsday. Physical Review Letters, 91, Article ID: 071301.
https://doi.org/10.1103/PhysRevLett.91.071301
[9]  Nojiri, S. and Odintsov, S.D. (2003) Quantum de Sitter Cosmology and Phantom Matter. Physics Letters B, 562, 147-152.
https://doi.org/10.1016/S0370-2693(03)00594-X
[10]  Nojiri, S., Odintsov, S.D. and Tsujikawa, S. (2005) Properties of Singularities in the (Phantom) Dark Energy Universe. Physical Review D, 71, Article ID: 063004.
https://doi.org/10.1103/PhysRevD.71.063004
[11]  Sotiriou, T.P. and Faraoni, V. (2010) f(R) Theories of Gravity. Reviews of Modern Physics, 82, 451-497.
https://doi.org/10.1103/RevModPhys.82.451
[12]  Nojiri, S. and Odintsov, S.D. (2011) Unified Cosmic History in Modified Gravity: From F(R) Theory to Lorentz Non-Invariant Models. Physics Reports, 505, 59-144.
https://doi.org/10.1016/j.physrep.2011.04.001
[13]  Alonso-Serrano, A., Bouhmadi-López, M. and Martín-Moruno, P. (2018) F(R) Quantum Cosmology: Avoiding the Big Rip. Physical Review D, 98, Article ID: 104004.
https://doi.org/10.1103/PhysRevD.98.104004
[14]  Bamba, K., Nojiri, S. and Odintsov, S.D. (2008) The Future of the Universe in Modified Gravitational Theories: Approaching a Finite-Time Future Singularity. Journal of Cosmology and Astroparticle Physics, 2008, Article No. 045.
https://doi.org/10.1088/1475-7516/2008/10/045
[15]  Dabrowski, M.P., Kiefer, C. and Sandhoefer, B. (2006) Quantum Phantom Cosmology. Physical Review D, 74, Article ID: 044022.
https://doi.org/10.1103/PhysRevD.74.044022
[16]  Bouhmadi-López, M. and Jiménez Madrid, J.A. (2005) Escaping the Big Rip? Journal of Cosmology and Astroparticle Physics, 2005, Article No. 005.
https://doi.org/10.1088/1475-7516/2005/05/005
[17]  Nojiri, S. and Odintsov, S.D. (2004) Quantum Escape of Sudden Future Singularity. Physics Letters B, 595, 1-8.
https://doi.org/10.1016/j.physletb.2004.06.060
[18]  Abdalla, M.C.B., Nojiri, S. and Odintsov, S.D. (2005) Consistent Modified Gravity: Dark Energy, Acceleration and the Absence of Cosmic Doomsday. Classical and Quantum Gravity, 22, L35.
https://doi.org/10.1088/0264-9381/22/5/L01
[19]  Bamba, K., et al. (2010) Finite-Time Future Singularities in Modified Gauss—Bonnet and F(R,G) Gravity and Singularity Avoidance. The European Physical Journal C, 67, 295-310.
https://doi.org/10.1140/epjc/s10052-010-1292-8
[20]  Briscese, F., et al. (2007) Phantom Scalar Dark Energy as Modified Gravity: Understanding the Origin of the Big Rip Singularity. Physics Letters B, 646, 105-111.
https://doi.org/10.1016/j.physletb.2007.01.013
[21]  Capozziello, S., et al. (2009) Classifying and Avoiding Singularities in the Alternative Gravity Dark Energy Models. Physical Review D, 79, Article ID: 124007.
https://doi.org/10.1103/PhysRevD.79.124007
[22]  Nojiri, S. and Odintsov, S.D. (2008) Future Evolution and Finite-Time Singularities in F(R) Gravity Unifying Inflation and Cosmic Acceleration. Physical Review D, 78, Article ID: 046006.
https://doi.org/10.1103/PhysRevD.78.046006
[23]  Elizalde, E., Nojiri, S. and Odintsov, S.D. (2004) Late-Time Cosmology in a (Phantom) Scalar-Tensor Theory: Dark Energy and the Cosmic Speed-Up. Physical Review D, 70, Article ID: 043539.
https://doi.org/10.1103/PhysRevD.70.043539
[24]  Kamenshchik, A.Y., Kiefer, C. and Sandhofer, B. (2007) Quantum Cosmology with a Big-Brake Singularity. Physical Review D, 76, Article ID: 064032.
https://doi.org/10.1103/PhysRevD.76.064032
[25]  Bouhmadi-Lopez, M., et al. (2009) Quantum Fate of Singularities in a Dark-Energy Dominated Universe. Physical Review D, 79, Article ID: 124035.
https://doi.org/10.1103/PhysRevD.79.124035
[26]  Kamenshchik, A.Y. (2013) Quantum Cosmology and Late-Time Singularities. Classical and Quantum Gravity, 30, Article ID: 173001.
https://doi.org/10.1088/0264-9381/30/17/173001
[27]  Albarran, I., et al. (2016) Classical and Quantum Cosmology of the Little Rip Abrupt Event. Physical Review D, 94, Article ID: 063536.
https://doi.org/10.1103/PhysRevD.94.063536
[28]  Schwinger, J. (1951) On Gauge Invariance and Vacuum Polarization. Physical Review, 82, 664-679.
https://doi.org/10.1103/PhysRev.82.664
[29]  Cohen, T.D. and McGady, D.A. (2008) Schwinger Mechanism Revisited. Physical Review D, 78, Article ID: 036008.
https://doi.org/10.1103/PhysRevD.78.036008
[30]  Gelis, F. and Tanji, N. (2016) Schwinger Mechanism Revisited. Progress in Particle and Nuclear Physics, 87, 1-49.
https://doi.org/10.1016/j.ppnp.2015.11.001
[31]  Hawking, S.W. (1975) Particle Creation by Black Holes. Communications in Mathematical Physics, 43, 199-220.
https://doi.org/10.1007/BF02345020
[32]  Gibbons, G.W. and Hawking, S.W. (1993) Action Integrals and Partition Functions in Quantum Gravity. Physical Review D, 15, 2752-2756.
https://doi.org/10.1103/PhysRevD.15.2752
[33]  Gibbons, G.W. and Hawking, S.W. (1993) Cosmological Event Horizons, Thermodynamics, and Particle Creation. Euclidean Quantum Gravity, World Scientific, Singapore, 281-294.
https://doi.org/10.1142/9789814539395_0018
[34]  Unruh, W.G. (1976) Notes on Black-Hole Evaporation. Physical Review D, 14, 870-892.
https://doi.org/10.1103/PhysRevD.14.870
[35]  Kharzeev, D. and Tuchin, K. (2005) From Color Glass Condensate to Quark-Gluon Plasma through the Event Horizon. Nuclear Physics A, 753, 316-334.
https://doi.org/10.1016/j.nuclphysa.2005.03.001
[36]  Castorina, P., Kharzeev, D. and Satz, H. (2007) Thermal Hadronization and Hawking-Unruh Radiation in QCD. The European Physical Journal C, 52, 187-201.
https://doi.org/10.1140/epjc/s10052-007-0368-6
[37]  Nielsen, A.B. and Yoon, J.H. (2008) Dynamical Surface Gravity. Classical and Quantum Gravity, 25, Article ID: 085010.
https://doi.org/10.1088/0264-9381/25/8/085010
[38]  Bekenstein, J.D. (1974) Generalized Second Law of Thermodynamics in Black-Hole Physics. Physical Review D, 9, 3292-3300.
https://doi.org/10.1103/PhysRevD.9.3292
[39]  Bekenstein, J.D. (1975) Statistical Black-Hole Thermodynamics. Physical Review D, 12, 3077-3085.
https://doi.org/10.1103/PhysRevD.12.3077
[40]  Hawking, S.W. (1976) Black Holes and Thermodynamics. Physical Review D, 13, 191-197.
https://doi.org/10.1103/PhysRevD.13.191
[41]  Jacobson, T. and Parentani, R. 2003) Horizon Entropy. Foundations of Physics, 33, 323-348.
https://doi.org/10.1023/A:1023785123428
[42]  Susskind, L. (2021) Three Impossible Theories. arXiv: 2107.11688.
https://arxiv.org/abs/2107.11688
[43]  Almheiri, A., Hartman, T., Maldacena, J., Shaghoulian, E. and Tajdini, A. (2021) The Entropy of Hawking Radiation. Reviews of Modern Physics, 93, Article ID: 035002.
https://doi.org/10.1103/RevModPhys.93.035002
[44]  Ijjas, A. and Steinhardt, P.J. (2022) Entropy, Black Holes, and the New Cyclic Universe. Physics Letters B, 824, Article ID: 136823.
https://doi.org/10.1016/j.physletb.2021.136823

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133