全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Fractional Model for the Single Stokes Pulse from the Nonlinear Optics

DOI: 10.4236/jamp.2022.1010191, PP. 2856-2875

Keywords: Fractional Stokes Pulse System, Fractional Stability, Fractional Euler Method, Numerical Integration

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper we refer to equations of motion for the single Stokes pulse from the nonlinear optics, called the Stokes pulse system. A fractional-order model with Caputo derivative associated to Stokes pulse system (called the fractional Stokes pulse system) is proposed. The existence and uniqueness of solution of initial value problem for this fractional system are proved. The dynamic behavior for a special fractional Stokes pulse system is investigated, including: the fractional stability, the stabilization problem using suitable linear controls and the numerical integration based on fractional Euler method.

References

[1]  Podlubny, I. (1999) Fractional Differential Equations. Academic Press, Cambridge.
[2]  Kilbas, A.A., Srivastava, H.M. and Trujillo, J.J. (2006) Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, 204, 1-523.
[3]  Ahmed, H.M. (2018) Fractional Euler Method: An Effective Tool for Solving Fractional Differential Equations of Fractional Order. Journal of the Egyptian Mathematical Society, 26, 38-43.
https://doi.org/10.21608/JOEMS.2018.9460
[4]  Agrawal, O.P. (2002) Solution for a Fractional Diffusion-Wave Equation Defined in a Bounded Domain. Nonlinear Dynamics, 29, 145-155.
https://doi.org/10.1023/A:1016539022492
[5]  Hilfer, R. (2000) Applications of Fractional Calculus in Physics. World Scientific, Singapore.
https://doi.org/10.1142/3779
[6]  Ahmed, E., El-Sayed, A.M.A. and El-Saka, H.A.A. (2007) Equilibrium Points, Stability and Numerical Solutions of Fractional-Order Predator-Prey and Rabies Models. Journal of Mathematical Analysis and Applications, 325, 542-553.
https://doi.org/10.1016/j.jmaa.2006.01.087
[7]  Matignon, D. (1996) Stability Results for Fractional Differential Equations with Applications to Control Processing. Proceedings of the Computational Engineering in Systems and Applications, Vol. 2, Lille, July 1996, 963-968.
[8]  Zhou, T. and Li, C. (2005) Synchronization in Fractional-Order Differential Systems. Physica D Nonlinear Phenomena, 212, 111-125.
https://doi.org/10.1016/j.physd.2005.09.012.
[9]  Bhalekar, S. (2012) Chaos Control and Synchronization in Fractional-Order Lorenz-Like System. International Journal of Differential Equations, 2012, Article ID: 623234, 16 p.
https://doi.org/10.1155/2012/623234
[10]  Ahmed, E., El-Sayed, A.M.A. and El-Saka, H.A.A. (2006) On Some Routh-Hurwitz Conditions for Fractional Order Differential Equations and Their Applications in Lorenz, Rössler, Chua and Chen Systems. Physics Letters A, 358, 1-4.
https://doi.org/10.1016/j.physleta.2006.04.087
[11]  Ivan, M. and Ivan, G. (2018) On the Fractional Euler Top System with Two Parameters. Journal of Modern Engineering Research, 8, 10-22.
[12]  Degeratu, M. and Ivan, M. (2006) Linear Connections on Lie Algebroids. Proceedings of the 5th Conference of Balkan Society of Geometers, Mangalia, 29 August-2 September 2005, 44-53.
[13]  Ivan, M., Ivan, G. and Opriș, D. (2009) Fractional Equations of the Rigid Body on the Pseudo-Orthogonal Group SO(2,1). International Journal of Geometric Methods in Modern Physics, 6, 1181-1192.
https://doi.org/10.1142/S0219887809004168
[14]  Ivan, G., Ivan, M. and Opriș, D. (2007) Fractional Dynamical Systems on Fractional Leibniz Algebroids. Analele științifice ale Universității “Al. I. Cuza” din Iași (S.N.), West University of Timișoara, Timișoara, 222-234.
[15]  David, D., Holm, D.D., Tratnik, M.V. (1990) Hamiltonian Chaos in Nonlinear Optical Polarization Dynamics. Physics Reports, 187, 281-367.
https://doi.org/10.1016/0370-1573(90)90063-8
[16]  Puta, M., Cașu, I. and Butur, M. (2002) Some Remarks on the Nonlinear Optical pol Arization Dynamics. Tensor. New Series, 63, 126-146.
[17]  Marsden, J.E. and Rațiu, T.S. (1999) Introduction to Mechanics and Symmetry. Springer, Berlin, 17.
[18]  Ivan, G. (2013) Geometrical and Dynamical Properties of General Euler Top System. Indian Journal of Pure and Applied Mathematics, 44, 77-93.
https://doi.org/10.1007/s13226-013-0004-0
[19]  Pop, C., Aron, A., Galea, C., Ciobanu, M. and Ivan, M. (2009) Some Geometric Aspects in Theory of Lotka-Volterra System. Proceedings of the 11th WSEAS International Conference on Sustainability in Science Engineering, Iasi, 27 May 2009, 91-97.
[20]  Tratnik, M.V. and Sipe, J.E. (1987) Nonlinear Polarization Dynamics. I. The Single Pulse Equations. Physical Review A, 35, 2965-2975.
https://doi.org/10.1103/PhysRevA.35.2965
[21]  Diethelm, K. (2010) The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type. Springer, Berlin.
[22]  Băleanu, D., Diethelm, K., Scalas, E. and Trujillo J.J. (2012) Fractional Calculus Models and Numerical Methods. In: Luo, A.C.J., Ed., Series on Complexity, Nonlinearity and Chaos, Vol. 3, World Scientific, Singapore, 428.
https://doi.org/10.1142/8180
[23]  Cheng, Z. (2011) Dynamic Analysis of a Fractional Order Rössler System. International Journal of Nonlinear Science, 12, 227-235.
[24]  Odibat, Z.M. and Momani, S. (2008) An Algorithm for the Numerical Solution of Differential Equations of Fractional Order. Journal of Applied Mathematics & Informatics, 26, 15-27.
http://www.kcam.biz.
[25]  Danca, M.-F. (2017) Hidden Chaotic Attractors in Fractional-Order Systems. Nonlinear Dynamics, 89, 577-586.
https://doi.org/10.1007/s11071-017-3472-7

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133