|
柔性表面微结构减阻效果研究
|
Abstract:
随着减阻研究的深入,人们将越来越多的注意力放到了仿生减阻上。通过观察一些水生生物,科学家们发现了垂向水流方向的沟槽结构具有一定的减阻效果,一些研究者也通过模拟这些水生生物的表皮做了一系列的研究,但是这些微织构在哪个尺度具有最好的减阻性能、微型沟槽的高宽比对减阻效果的影响还没有确切研究,同时目前的研究都以刚性结构为基础,忽略了微织构材料对减阻效果的影响。为解决以上问题,本文利用有限元软件,对不同尺度、不同高宽比的沟槽以及柔性沟槽的减阻效果进行研究。通过研究发现,微型沟槽在5微米尺度的减阻效果最佳,可以达到15%;沟槽的高宽比在大于1.2时减阻效果最佳,可以达到15%左右;柔性沟槽在低速流中的减阻效果比较明显,其中在1 m/s的流速下可以达到12.38%。
With the deepening of the research on drag reduction, people are paying more and more attention to bionic drag reduction. By observing some aquatic organisms, scientists have found that the trench structure that hangs in the direction of water flow has a certain resistance reduction effect. Some researchers have also done a series of studies by simulating the epidermis of these aquatic organisms. However, the scale at which these micro fabrics have the best drag reduction performance, and the effect of the aspect ratio of the micro groove on the drag reduction effect has not been accurately studied. At the same time, the current research is based on rigid structure, ignoring the influence of micro woven materials on the drag reduction effect. In order to solve the above problems, this paper uses finite element software to study of trenches and flexible trenches at different scales and different aspect ratios. Through the study, it was found that the micro groove had the best resistance reduction effect at the 5 micron scale, which can reach 15%. The aspect ratio of the groove is the best resistance reduction when it is greater than 1.2, and can reach about 15%. The drag reduction effect of flexible grooves in low-speed flow is more obvious, which can reach 12.38% at a flow rate of 1 m/s.
[1] | Reif, W. and Dinkelacker, A. (1982) Hydrodynamics of the Squamation in Fast Swimming Sharks. Neues Jahrbuch für Geologie und Pal?ontologie, Abhandlungen, 164, 184-187. https://doi.org/10.1127/njgpa/164/1982/184 |
[2] | Walsh, M.J. and Lindemann, A.M. (1984) Optimization and Application of Riblets for Turbulent Drag Reduction. 22nd Aero-space Sciences Meeting, Reno, NV, 347. https://doi.org/10.2514/6.1984-347 |
[3] | Walsh, M.J. (1983) Riblets as a Vis-cous Drag Reduction Technique. AIAA Journal, 21, 485-486.
https://doi.org/10.2514/3.60126 |
[4] | 徐琰, 张臣, 汪子轩. 局部近似平面V型沟槽减阻特性数值模拟研究[J]. 航空制造技术, 2021, 64(15): 14. |
[5] | 胡海豹, 宋保维, 潘光, 等. 鲨鱼沟槽表皮减阻机理的仿真研究[J]. 系统仿真学报, 2007, 19(21): 4901-4903. |
[6] | 温健. 大鳞副泥鳅(P. dabryanus)体表柔性微形貌减阻特性仿生研究[D]: [硕士学位论文]. 沈阳: 沈阳农业大学, 2020. |