全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

水泥基体结构异质性多重分形分析与模拟
Multifractal Analysis and Modeling of Structural Heterogeneity in Cement Paste

DOI: 10.12677/HJCE.2022.119114, PP. 1037-1045

Keywords: 水泥基体,结构异质性,X射线计算机断层扫描,多重分形分析,一般化二项迭代方法
Cement Paste
, Structural Heterogeneity, X-Ray Computed Tomography, Multifractal Analysis, Generalized Binomial Multiplicative Cascade

Full-Text   Cite this paper   Add to My Lib

Abstract:

水泥基体由具有不规则几何形貌的组分无序堆积而成,在空间维度上呈现出典型的结构异质性。本文以不同养护龄期(7 d, 28 d)的普通硅酸盐水泥净浆为例,基于X射线计算机断层扫描(X–ray Computed Tomography, XCT)技术获取其三维灰度图像。针对水泥基体的三维结构,以局部孔隙率为指标开展多重分形分析。结果表明,多重分形分析对于定量描述水泥基体结构异质性具有很好的适用性。此外,本文提出利用一般化二项迭代方法模拟水泥基体的结构异质性。
Cement paste is comprised of anhydrous clinkers and hydrates of irregular morphology, which manifests an intrinsic structural heterogeneity in spatial domain. Taking ordinary Portland cement paste cured at 7 d and 28 d into account, we use the X-ray Computed Tomography (XCT) to acquire their 3-dimensional structural features. With the 3-dimensional XCT images as input, the multifractal analysis is performed based on a definition of local porosity. Results indicate that the multifractal analysis shows a good applicability in quantification of the structural heterogeneity in cement paste. Besides that, a generalized binomial multiplicative cascade is introduced to model the multifractal structural heterogeneity.

References

[1]  Winslow, D.N. (1985) The Fractal Nature of the Surface of Cement Paste. Cement and Concrete Research, 15, 817-824.
https://doi.org/10.1016/0008-8846(85)90148-6
[2]  Zhang, H., et al. (2019) Experimentally Informed Micromechanical Modelling of Cement Paste: An Approach Coupling X-Ray Computed Tomography and Statistical Nanoindentation. Composites Part B: Engineering, 157, 109-122.
https://doi.org/10.1016/j.compositesb.2018.08.102
[3]  Lange, D.A., Jennings, H.M. and Shah, S.P. (1994) Image Analysis Techniques for Characterization of Pore Structure of Cement-Based Materials. Cement and Concrete Research, 24, 841-853.
https://doi.org/10.1016/0008-8846(94)90004-3
[4]  Zeng, Q., Li, K.F., Chong, T.F. and Dangla, P. (2010) Surface Fractal Analysis of Pore Structure of High-Volume Fly-Ash Cement Pastes. Applied Surface Science, 257, 762-768.
https://doi.org/10.1016/j.apsusc.2010.07.061
[5]  Liu, X., Feng, P., Li, W., Geng, G., Huang, J., Gao, Y., Mu, S. and Hong, J. (2021) Effects of pH on the Nano/Micro Structure of Calcium Silicate Hydrate (C-S-H) under Sulfate Attack. Cement and Concrete Research, 140, Article ID: 106306.
https://doi.org/10.1016/j.cemconres.2020.106306
[6]  Jiang, N., et al. (2020) 3D Finite Element Modeling of Water Diffusion Behavior of Jute/PLA Composite Based on X-Ray Computed Tomography. Composites Science and Technology, 199, Article ID: 108313.
https://doi.org/10.1016/j.compscitech.2020.108313
[7]  Kim, J.S., et al. (2019) Issues on Characterization of Cement Paste Microstructures from μ-CT and Virtual Experiment Framework for Evaluating Mechanical Properties. Construction and Building Materials, 202, 82-102.
https://doi.org/10.1016/j.conbuildmat.2019.01.030
[8]  Gao, Y., Jiang, J., De Schutter, G., Ye, G. and Sun, W. (2014) Fractal and Multifractal Analysis on Pore Structure in Cement Paste. Construction and Building Materials, 69, 253-261.
https://doi.org/10.1016/j.conbuildmat.2014.07.065
[9]  Stanley, H.E. and Meakin, P. (1988) Multifractal Phenomena in Physics and Chemistry. Nature, 335, 405-409.
https://doi.org/10.1038/335405a0
[10]  Esquivel, F.J., Alonso, F.J. and Angulo, J.M. (2017) Multifractal Complexity Analysis in Space-Time Based on the Generalized Dimensions Derivatives. Spatial Statistics, 22, 469-480.
https://doi.org/10.1016/j.spasta.2017.07.014
[11]  Paz-Ferreiro, J., et al. (2018) Soil Texture Effects on Multifractal Behaviour of Nitrogen Adsorption and Desorption Isotherms. Biosystems Engineering, 168, 121-132.
https://doi.org/10.1016/j.biosystemseng.2018.01.009
[12]  Valentini, L., Artioli, G., Voltolini, M. and Dalconi, M.C. (2012) Multifractal Analysis of Calciumsilicate Hydrate (C-S-H) Mapped by X-Ray Diffraction Microtomography. Journal of the American Ceramic Society, 95, 2647-2652.
https://doi.org/10.1111/j.1551-2916.2012.05255.x
[13]  Gao, Y., Gu, Y., Mu, S., Jiang, J. and Liu, J. (2021) The Multifractal Property of Heterogeneous Microstructure in Cement Paste. Fractals, 29, Article ID: 2140006.
https://doi.org/10.1142/S0218348X21400065
[14]  Paggi, M. and Carpinteri, A. (2009) Fractal and Multifractal Approaches for the Analysis of Crack-Size Dependent Scaling Laws in Fatigue. Chaos Solitonsand Fractals, 40, 1136-1145.
https://doi.org/10.1016/j.chaos.2007.08.068
[15]  Mach, J., Mas, F. and Sagues, F. (1995) Two Representations in Multifractal Analysis. Journal of Physics A—Mathematical and General, 28, 5607-5622.
https://doi.org/10.1088/0305-4470/28/19/015
[16]  Chhabra, A.B. and Jensen, R.V. (1989) Direct Determination of the f(α) Singularity Spectrum. Physical Review Letters, 62, 1327-1330.
https://doi.org/10.1103/PhysRevLett.62.1327
[17]  Arneodo, A., Decoster, N. and Roux, S.G. (2000) A Wavelet-Based Method for Multifractal Image Analysis. I. Methodology and Test Applications on Isotropicand Anisotropic Random Rough Surfaces. The European Physical Journal B, 15, 567-600.
https://doi.org/10.1007/s100510051161
[18]  Decoster, N., Roux, S.G. and Arneodo, A. (2000) A Wavelet-Based Method for Multifractal Image Analysis. II. Applications to Synthetic Multifractal Rough Surfaces. The European Physical Journal B, 15, 739-764.
https://doi.org/10.1007/s100510051179
[19]  Saucier, A. (1992) Effective Permeability of Multifractal Porous Media. Physica A, 183, 381-397.
https://doi.org/10.1016/0378-4371(92)90290-7
[20]  Perfect, E., Gentry, R.W., Sukop, M.C. and Lawson, J.E. (2006) Multifractal Sierpinski Carpets: Theory and Application to Upscaling Effective Saturated Hydraulic Conductivity. Geoderma, 134, 240-252.
https://doi.org/10.1016/j.geoderma.2006.03.001
[21]  Cheng, Q. (2014) Generalized Binomial Multiplicative Cascade Processes and Asymmetrical Multifractal Distributions. Nonlinear Processes in Geophysics, 21, 477-487.
https://doi.org/10.5194/npg-21-477-2014
[22]  Barral, J. and Mandelbrot, B. (2002) Multiplicative Products of Cylindrical Pulses. Probability Theory and Related Fields, 124, 409-430.
https://doi.org/10.1007/s004400200220
[23]  Muzy, J. and Bacry, E. (2002) Multifractal Stationary Random Measures and Multifractal Random Walks with Log-Infinitely Divisible Scaling Laws. Physical Review E, 66, Article ID: 056121.
https://doi.org/10.1103/PhysRevE.66.056121
[24]  Gao, Y., Li, W. and Yuan, Q. (2021) Modeling the Elastic Modulus of Cement Paste with X-Ray Computed Tomography and a Hybrid Analytical-Numerical Algorithm: The Effect of Structural Heterogeneity. Cement and Concrete Composites, 122, Article ID: 104145.
https://doi.org/10.1016/j.cemconcomp.2021.104145
[25]  Chainais, P. (2006) Multidimensional Infinitely Divisible Cascades. Application to the Modelling of Intermittency in Turbulence. The European Physical Journal B, 51, 229-243.
https://doi.org/10.1140/epjb/e2006-00213-y

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133