全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

无金属条件下的酰胺脱水反应
Dehydration of Amides under Nonmetallic Conditions

DOI: 10.12677/JOCR.2022.103011, PP. 111-117

Keywords: 酰胺,脱水反应,脱水重排
Amide
, Dehydration Reaction, Dehydration Rearrangement

Full-Text   Cite this paper   Add to My Lib

Abstract:

酰胺作为广泛存在于自然界与药物分子中的含氮化合物,在工业,医药,农药等领域发挥了重要作用。因此,酰胺反应的研究逐渐受到合成化学家的广泛关注。文献调研后,本文对无金属条件下的酰胺脱水反应和无金属条件下的酰胺脱水重排反应进行了总结和探讨,并对该脱水反应的发展做出展望。
Amides are widely existing in nature, and drug molecules play an important role in the industry, medicine, pesticides and other fields. Therefore, the study of amides has gradually attracted the attention of synthetic chemists. After a literature review, this paper summarizes and discusses the dehydration and rearrangement of amides under metal-free conditions and looks forward to the development of this dehydration reaction.

References

[1]  Jagadeesh, R.V., Junge, H. and Beller, M. (2014) Green Synthesis of Nitriles Using Non-Noble Metal Oxides-Based Nanocatalysts. Nature Communications, 5, Article No. 4123.
https://doi.org/10.1038/ncomms5123
[2]  Hanada, S., Motoyama Y. and Nagashima, H. (2008) Hydrosilanes Are Not Always Reducing Agents for Carbonyl Compounds but Can Also Induce Dehydration: A Ruthenium-Catalyzed Conversion of Primary Amides to Nitriles. European Journal of Organic Chemistry, 2008, 4097-4100.
https://doi.org/10.1002/ejoc.200800523
[3]  Zhou, S., Addis, D., Das, S., Junge, K. and Beller, M. (2009) New Catalytic Properties of Iron Complexes: Dehydration of Amides to Nitriles. Chemical Communications, 32, 4883-4885.
https://doi.org/10.1039/b910145d
[4]  Elangovan, S., Quintero-Duque, S., Dorcet, V., Roisnel, T., Norel, L., Darcel C. and Sortais, J.B. (2015) Kn?lker-Type Iron Complexes Bearing an N-Heterocyclic Carbene Ligand: Synthesis, Characterization, and Catalytic Dehydration of Primary Amides. Organometallics, 34, 4521-4528.
https://doi.org/10.1021/acs.organomet.5b00553
[5]  Yao, W., Fang, H., He, Q., Peng, D., Liu G. and Huang, Z. (2019) A BEt3-Base Catalyst for Amide Reduction with Silane. The Journal of Organic Chemistry, 84, 6084-6093.
https://doi.org/10.1021/acs.joc.9b00277
[6]  Enthaler S. and Inoue, S. (2012) An Efficient Zinc-Catalyzed Dehydration of Primary Amides to Nitriles. Chemistry - An Asian Journal, 7, 169-175.
https://doi.org/10.1002/asia.201100493
[7]  Xue, B., Sun, H., Wang, Y., Zheng, T., Li, X., Fuhr O. and Fenske, D. (2016) Efficient Reductive Dehydration of Primary Amides to Nitriles Catalyzed by Hydrido Thiophenolato Iron(II) Complexes under Hydrosilation Conditions. Catalysis Communications, 86, 148-150.
https://doi.org/10.1016/j.catcom.2016.08.024
[8]  Enthaler, S. (2011) Straightforward Uranium-Catalyzed Dehydration of Primary Amides to Nitriles. Chemistry, 17, 9316-9319.
https://doi.org/10.1002/chem.201101478
[9]  Enthaler S. and Weidauer, M. (2011) Copper-Catalyzed Dehydration of Primary Amides to Nitriles. Catalysis Letters, 141, 1079-1085.
https://doi.org/10.1007/s10562-011-0660-9
[10]  Sueoka, S., Mitsudome, T., Mizugaki, T., Jitsukawa K. and Kaneda, K. (2010) Supported Monomeric Vanadium Catalyst for Dehydration of Amides to Form Nitriles. Chemical Communications, 46, 8243-8245.
https://doi.org/10.1039/c0cc02412k
[11]  Bézier, D., Venkanna, G. T., Sortais J.B. and Darcel, C. (2011) Well-Defined Cyclopentadienyl NHC Iron Complex as the Catalyst for Efficient Hydrosilylation of Amides to Amines and Nitriles. ChemCatChem, 3, 1747-1750.
https://doi.org/10.1002/cctc.201100202
[12]  Liu, R.Y., Bae, M. and Buchwald, S.L. (2018) Mechanistic Insight Facilitates Discovery of a Mild and Efficient Copper-Catalyzed Dehydration of Primary Amides to Nitriles Using Hydrosilanes. Journal of the American Chemical Society, 140, 1627-1631.
https://doi.org/10.1021/jacs.8b00643
[13]  Titherley, A.W. (1904) CLXIX.—The Acylation of Amides. Journal of the Chemical Society, Transactions, 85, 1673-1691.
https://doi.org/10.1039/CT9048501673
[14]  Mitchell, J. and Ashby, C.E. (1945) The Determination of Unsubstituted Acid Amides1. Journal of the American Chemical Society, 67, 161-164.
https://doi.org/10.1021/ja01218a003
[15]  Thompson, Q.E. (1951) Preparation and Identification of N-Formylbenzamide and its Condensation Product with Phenylhydrazine. Journal of the American Chemical Society, 73, 5914-5915.
https://doi.org/10.1021/ja01156a560
[16]  Stephens, C.R., Bianco, E.J. and Pilgrim, F.J. (1955) A New Reagent for Dehydrating Primary Amides under Mild Conditions. Journal of the American Chemical Society, 77, 1701-1702.
https://doi.org/10.1021/ja01611a102
[17]  Dennis, W.E. (1970) Nitrile Synthesis. Dehydration of Amides by Silazanes, Chlorosilanes, Alkoxysilanes, and Aminosilanes. The Journal of Organic Chemistry, 35, 3253-3255.
https://doi.org/10.1021/jo00835a016
[18]  Campagna, F., Carotti A. and Casini, G. (1977) A Convenient Synthesis of Nitriles from Primary Amides under Mild Conditions. Tetrahedron Letters, 18, 1813-1815.
https://doi.org/10.1016/S0040-4039(01)83612-1
[19]  Kuo, C.W., Zhu, J.L., Wu, J.D., Chu, C.M., Yao C.F. and Shia, K.S. (2007) A Convenient New Procedure for Converting Primary Amides into Nitriles. Chemical Communications, No. 3, 301-303.
https://doi.org/10.1039/B614061K
[20]  Rappai, J.P., Karthikeyan, J., Prathapan, S. and Unnikrishnan, P.A. (2011) Simple and Efficient One-Pot Synthesis of Nitriles from Amides and Oximes Using in Situ-Generated Burgess-Type Reagent. Synthetic Communications, 41, 2601-2606.
https://doi.org/10.1080/00397911.2010.515333
[21]  Heck, M.P., Wagner, A. and Mioskowski, C. (1996) Conversion of Primary Amides to Nitriles by Aldehyde-Catalyzed Water Transfer. The Journal of Organic Chemistry, 61, 6486-6487.
https://doi.org/10.1021/jo961128v
[22]  Zhou, S., Junge, K., Addis, D., Das, S. and Beller, M. (2009) A General and Convenient Catalytic Synthesis of Nitriles from Amides and Silanes. Organic Letters, 11, 2461-2464.
https://doi.org/10.1021/ol900716q
[23]  Shipilovskikh, S.A., Vaganov, V.Y., Denisova, E.I., Rubtsov, A.E. and Malkov, A.V. (2018) Dehydration of Amides to Nitriles under Conditions of a Catalytic Appel Reaction. Organic Letters, 20, 728-731.
https://doi.org/10.1021/acs.orglett.7b03862
[24]  Ding, R., Liu, Y., Han, M., Jiao, W., Li, J. Tian, H. and Sun, B. (2018) Synthesis of Nitriles from Primary Amides or Aldoximes under Conditions of a Catalytic Swern Oxidation. The Journal of Organic Chemistry, 83, 12939-12944.
https://doi.org/10.1021/acs.joc.8b02190
[25]  Hota, P.K., Maji, S., Ahmed, J., Rajendran, N.M. and Mandal, S.K. (2020) NHC-Catalyzed Silylative Dehydration of Primary Amides to Nitriles at Room Temperature. Chemical Communications, 56, 575-578.
https://doi.org/10.1039/C9CC08413D
[26]  Brannock, K.C. and Burpitt, R.D. (1965) The Preparation of 4-Pentenenitriles and 3,4-Pentadienenitriles from N-(2-Alkenyl)- and N-(2-Alkynyl)Amides. The Journal of Organic Chemistry, 30, 2564-2565.
https://doi.org/10.1021/jo01019a016
[27]  Tsunoda, T., Sakai, M., Sasaki, O., Sako, Y., Hondo Y. and It?, S. (1992) Asymmetric Induction in Aza-Claisen Rearrangement of Carboxamide Enolates. Effect of Chiral Auxiliary on Nitrogen. Tetrahedron Letters, 33, 1651-1654.
https://doi.org/10.1016/S0040-4039(00)91698-8
[28]  Blechert, S. (1989) The Hetero-Cope Rearrangement in Organic Synthesis. Synthesis, 89, 71-82.
https://doi.org/10.1055/s-1989-27158
[29]  Ziegler, F.E. (1977) Stereo- and Regiochemistry of the Claisen Rearrangement: Applications to Natural Products Synthesis. Accounts of Chemical Research, 10, 227-232.
https://doi.org/10.1021/ar50114a006
[30]  Walters, M.A., McDonough, C.S., Brown P.S. and Hoem, A.B. (1991) An Extremely Mild 3-Aza-Claisen Reaction. 1. Rearrangement of Simple N-Allylamides. Tetrahedron Letters, 32, 179-182.
https://doi.org/10.1016/0040-4039(91)80848-Z
[31]  Walters, M.A, Hoem, A.B., Arcand, H.R., Hegeman, A.D. and McDonough, C.S. (1993) An Extremely Mild 3-Aza-Claisen Reaction. 2. New Conditions and the Rearrangement of α-Heteroatom Substituted Amides. Tetrahedron Letters, 34, 1453-1456.
https://doi.org/10.1016/S0040-4039(00)60316-7
[32]  Walters, M.A. (1994) Ab Initio Investigation of Three 3-Aza-Claisen Variations. Journal of the American Chemical Society, 116, 11618-11619.
https://doi.org/10.1021/ja00104a072

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133