全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

外源色氨酸对番茄幼苗生长和生理特性的影响
Effects of Exogenous Tryptophan on Growth and Physiological Characteristics of Tomato Seedlings

DOI: 10.12677/BR.2022.115074, PP. 609-615

Keywords: 色氨酸,番茄幼苗,生长,壮苗
Tryptophan
, Tomato Seedlings, Growth, Strong Seedlings

Full-Text   Cite this paper   Add to My Lib

Abstract:

为研究外源色氨酸对番茄幼苗生长和生理特性的影响,进行了不同浓度(0、50、100、200、400 mg/L)色氨酸水溶液叶片喷施处理试验。结果表明,200 mg/L的色氨酸处理下番茄幼苗的生物量和壮苗指数高于其它处理。随着色氨酸浓度的提高,叶片的叶绿素和类胡萝卜素含量均呈先升高后降低的趋势,且均在200 mg/L处理时达到最大。色氨酸水溶液处理显著提高了番茄幼苗叶片可溶性糖和可溶性蛋白含量,以200 mg/L色氨酸处理最优。叶片中的抗氧化酶SOD和POD的活性均呈先升高后降低的趋势,在200 mg/L处理时达到最大,MDA含量在50 mg/L处理时最低。综合来看,本研究表明200 mg/L色氨酸叶片喷施处理最有利于提高番茄幼苗的生长和生理活性。
In order to study the effects of exogenous tryptophan on the growth and physiological characteristics of tomato seedlings, different concentrations (0, 50, 100, 200, and 400 mg/L) of tryptophan solution were sprayed on the leaves. The results showed that the biomass and strong seeding indexes of tomato seedlings under 200 mg/L tryptophan treatment were greater than those of other treatments. With the increase of tryptophan concentration, the chlorophyll and carotenoid contents of leaves showed the trend of increasing first and then decreasing, reaching the maximum at 200 mg/L treatment. The tomato seedlings’ soluble sugar and soluble protein contents were significantly increased by exogenous tryptophan treatment, with the 200 mg/L tryptophan treatment having the highest value. The antioxidant enzyme activities of SOD and POD in tomato leaves of all treatments were increased first and then decreased, reaching the maximum at 200 mg/L treatment, and the lowest MDA content occurred in the 50 mg/L treatment. Taken together, our results showed that 200 mg/L exogenous tryptophan treatment exhibited the most benefits in improving tomato seedlings’ growth and physiological activity.

References

[1]  刘岩, 李翔宇, 李成会. 色氨酸营养研究进展[J]. 中国饲料, 2019(5): 50-53.
[2]  Arnao, M.B. and Hernández-Ruiz, J. (2021) Melatonin as a Regulatory Hub of Plant Hormone Levels and Action in Stress Situations. Plant Biology, 23, 7-19.
https://doi.org/10.1111/plb.13202
[3]  Glawischnig, E. (2007) Camalexin. Phytochemistry, 68, 401-406.
https://doi.org/10.1016/j.phytochem.2006.12.005
[4]  Halkier, B.A. and Gershenzon, J. (2006) Biology and Biochemistry of Glucosinolates. Annual Review of Plant Biology, 57, 303-333.
https://doi.org/10.1146/annurev.arplant.57.032905.105228
[5]  Gravel, V., Antoun, H. and Tweddell, R.J. (2007) Growth Stimulation and Fruit Yield Improvement of Greenhouse Tomato Plants by Inoculation with Pseudomonas putida or Trichoderma atroviride: Possible Role of Indole Acetic Acid (IAA). Soil Biology and Biochemistry, 39, 1968-1977.
https://doi.org/10.1016/j.soilbio.2007.02.015
[6]  蒋佳, 朱星宇, 李晶. 外源色氨酸对油菜幼苗色氨酸下游代谢网络及生长发育的影响[J]. 西北植物学报, 2020, 40(9): 1549-1557.
[7]  陈振德, 黄俊杰, 何金明, 蔡葵. 土施L-色氨酸对甘蓝产量和养分吸收的影响[J]. 土壤学报, 1997, 34(2): 200-205.
[8]  钟晓红, 石雪晖, 肖浪涛. 色氨酸提高草莓果实品质和产量试验[J]. 中国果树, 2001(2): 4-7.
[9]  陈明昌, 程滨, 张强, 丁玉川, 杨治平, 刘平. 土施L-蛋氨酸、L-苯基丙氨酸、L-色氨酸对玉米生长和养分吸收的影响[J]. 应用生态学报, 2005, 16(6):1033-1037.
[10]  El-Bassiouny, H.M.S. (2005) Physiological Responses of Wheat to Salinity Alleviation by Nicotinamide and Tryptophan. International Journal of Agriculture and Biology, 7, 653-659.
[11]  Rao, S.R., Qayyum, A., Razzaq, A., Ahmad, M., Mahmood, I. and Sher, A. (2012) Role of Foliar Application of Salicylic Acid and l-Tryptophan in Drought Tolerance of Maize. Journal of Animal & Plant Sciences, 22, 768-772.
[12]  朱星宇. 色氨酸处理对油菜生长发育及CdCl2抗性的影响[D]: [硕士学位论文]. 哈尔滨: 东北农业大学, 2020.
[13]  蒋佳. 色氨酸对西兰花镉胁迫抗性的影响[D]: [硕士学位论文]. 哈尔滨: 东北农业大学, 2021.
[14]  Song, J.H., Chen, Z., Zhang, A.X., Wang, M., Jahan, M.S., Wen, Y., et al. (2022) The Positive Effects of Increased Light Intensity on Growth and Photosynthetic Performance of Tomato Seedlings in Relation to Night Temperature Level. Agronomy, 12, Article No. 343.
https://doi.org/10.3390/agronomy12020343
[15]  冯雪锋, 许雷, 张梦恩, 刘慧聪, 张志芳. 不同配比育苗基质对番茄幼苗生长的影响[J]. 农业研究与应用, 2021, 34(4): 73-78.
[16]  刘凯, 姚凤珍, 孙士景, 葛丽红, 高忠兰. 不同LED光配方对番茄幼苗生长调控的研究[J]. 中国照明电器, 2021(9): 20-26.
[17]  田雅楠, 曹玲玲, 赵立群, 曹彩红. 不同营养液配方对番茄潮汐式灌溉育苗质量的影响[J]. 中国果菜, 2021, 41(9): 83-87.
[18]  赵海亮, 左璐, 侯雷平, 刘柯辉, 刘勤, 霍志勇, 等. 叶面施用色氨酸对番茄果实品质的改良效应[J]. 山西农业大学学报(自然科学版), 2021, 41(4): 68-75.
[19]  张宪政. 植物叶绿素含量测定-丙酮乙醇混合液法[J]. 辽宁农业科学, 1986(3): 26-28.
[20]  张以顺. 植物生理学实验教程[M]. 北京: 高等教育出版社, 2009.
[21]  王学奎. 植物生理生化实验原理和技术[M]. 第2版. 北京: 高等教育出版社, 2006.
[22]  陈兴平, 郭佩仪, 于金晖, 郭少龙, 张泽鑫, 宋世威. 不同水溶肥种类及浓度对番茄幼苗生长的影响[J]. 农业科学, 2022, 12(4): 275-281.
https://doi.org/10.12677/HJAS.2022.124041
[23]  Kaur, S., Ghai, N. and Jindal, S.K. (2017) Improvement of Growth Characteristics and Fruit Set in Bell Pepper (Capsicum annuum L.) through IAA application. Indian Journal of Plant Physiology, 22, 213-220.
https://doi.org/10.1007/s40502-017-0293-0

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133