|
高速公路超高缓和段排水沥青路面空隙率及内部排水设计方法
|
Abstract:
高速公路超高缓和段由于纵横坡度较小,极易造成路面积水。为解决超高缓和段路面积水问题,依托青临高速公路某超高缓和段路面工程,提出了排水沥青路面设计方案。首先结合工程案例,给出了无路面积水和水膜厚度小于临界水膜厚度两种工况下的空隙率计算方法。然后,提出了一种匹配排水沥青路面内部排水的横向排水槽结构,给出了横向排水槽尺寸与数量的确定方法。案例计算结果表明,本文给出的排水路面目标空隙率及内部排水设施设计方法是可行与合理的,可为解决高速公路超高缓和段路面积水难题提供参考。
The superelevation transition section of the highway is highly susceptible to water on the roadway due to the low longitudinal and transverse slopes. In order to solve the problem of water on the road surface of the superelevation transition section, the design of porous asphalt pavement was proposed based on a pavement project of a superelevation transition section of Qinglin Expressway. Firstly, the calculation method of air void under two working conditions of no road surface water and water film thickness less than critical water film thickness is given with engineering cases. Then, a transverse drainage channel structure matching the internal drainage of the porous asphalt pavement is proposed, and a method for determining the size and number of transverse drainage channels is given. The results of the case calculations show that the target air void of porous asphalt pavement and the design method of internal drainage facilities given in this paper are feasible and reasonable, which can provide a reference for solving the problem of water on the road surface of the superelevation transition section of highway.
[1] | 张爱花, 牛肖. 多雨区高速公路超高过渡段路面积水处理措施研究[J]. 公路交通科技(应用技术版), 2020, 16(8): 32-33, 39. |
[2] | 祁颖智. 基于道路线形组合的路面径流行为研究[D]: [硕士学位论文]. 南京: 东南大学, 2019. |
[3] | 杨梦, 汤天乐, 胡琦. 排水沥青路面处治超高渐变段路面积水问题的应用研究[J]. 湖南交通科技, 2021, 47(3): 58-62. |
[4] | 张锋, 刘永旭, 杜晓博. 高速公路超高渐变段排水技术研究[J]. 华东公路, 2019(1): 44-48. |
[5] | 余军, 余晓敏. 超高过渡段上的积水和其振动标线的设置[J]. 江西建材, 2013(5): 230-231. |
[6] | Chen, J.-S. and Yang, C.H. (2021) Porous Asphalt Concrete: A Review of Design, Construction, Performance and Maintenance. International Journal of Pavement Research and Technology, 13, 601-612.
https://doi.org/10.1007/s42947-020-0039-7 |
[7] | 张燕飞. 降雨条件下多车道高速公路超高过渡段交通安全保障技术研究[D]: [硕士学位论文]. 西安: 长安大学, 2020. |
[8] | 于良溟. 排水性沥青路面防水粘结层研究[D]: [硕士学位论文]. 南京: 东南大学, 2006. |
[9] | 沈安琪. PAC-13排水路面在南方多雨地区高速公路“零坡段”的应用[J]. 广东公路交通, 2021, 47(5): 5-10. |
[10] | Kuruppu, U., Rahman, A. and Rahman, M.A. (2019) Permeable Pavement as a Storm Water Best Management Practice: A Review and Discussion. Environmental Earth Sciences, 78, Article No. 327.
https://doi.org/10.1007/s12665-019-8312-2 |
[11] | 肖鑫. 排水沥青混合料细观结构及排水特性研究[D]: [博士学位论文]. 广州: 华南理工大学, 2014. |
[12] | 肖鑫, 张肖宁. 排水沥青路面排水能力分析及目标空隙率确定[J]. 中外公路, 2016, 36(1): 49-53. |
[13] | 马翔, 倪富健, 李强. 排水面层渗流模型及参数[J]. 东南大学学报(自然科学版), 2014, 44(2): 381-385. |
[14] | 汪鸿山, 冯德成, 解晓光. 孔隙率对透水性沥青路面渗透性能的影响规律[J]. 建筑材料学报, 2017, 20(3): 464-468. |
[15] | 潍坊市气象局. 关于发布潍坊市中心城区暴雨强度公式(修订)的通告[EB/OL].
http://csglj.weifang.gov.cn/SZDT/TZGG/201511/t20151112_1613002.htm, 2015-11-12. |
[16] | 中交路桥技术有限公司. JTG/T D33-2012, 公路排水设计规范[S]. 北京: 人民交通出版社, 2013. |
[17] | 交通运输部公路交通研究院. JTG/T 3350-03-2020, 排水沥青路面设计与施工技术规范[S]. 北京: 人民交通出版社, 2020. |
[18] | 纪洋洋. 排水路面渗流模型分析与试验研究[D]: [硕士学位论文]. 南京: 南京航空航天大学, 2018. |
[19] | Luo, W. and Li, L. (2019) Development of a New Analytical Water Film Depth (WFD) Prediction Model for Asphalt Pavement Drainage Evaluation. Construction and Building Materials, 218, 530-542.
https://doi.org/10.1016/j.conbuildmat.2019.05.142 |