全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

动力锂电池液冷板冷却性能的优化分析
Optimization Analysis of Cooling Performance of Liquid Cooling Plate for Power Lithium Battery

DOI: 10.12677/MOS.2022.115125, PP. 1327-1339

Keywords: 动力锂电池,热管理,液冷板,能耗,数值模拟
Power Lithium Battery
, Thermal Management, Liquid Cooling Plate, Energy Consumption, Numerical Simulation

Full-Text   Cite this paper   Add to My Lib

Abstract:

为提升电池液冷板冷却性能同时降低其自身能耗,本文提出了两种流道结构的液冷板,以液冷板与被冷却的单体电池为研究对象,借助数值模拟的方法对电池与液冷板系统进行仿真计算,对不同冷却液的流量下电池温度场的最大温差、平均温度以及冷却液进出口压差等参数进行分析。结果表明:并行流道结构冷板在自身能耗与电池的体平均温度方面要低于串行流道结构冷板,但后者冷却下的电池温度场均匀性要优于前者。为提升并行结构冷板冷却电池的温度场均匀性,以在电池与冷板接触面之间添加厚度为0.6 mm石墨板的方式进行优化,经过优化后电池温度场最大温差相比优化前有着明显的降低,流量为5.4 × 10?4 kg/s时冷板优化前后电池的最大温差分别为6.49 K与4.51 K,降幅达到30.51%。经优化后的并行结构液板冷在电池温度场的平均温度、最大温差与自身能耗等参数上较串行结构有着明显的优势。此结果将对实际大容量电池热管理系统中并行流道结构的液冷板设计提供部分依据。
In order to improve the cooling performance of the battery liquid cooling plate and reduce its own energy consumption, this paper proposes two kinds of channel structures for the liquid cooling plate. Taking the liquid cooling plate and the cooled single battery as the research object, the battery and liquid cooling plate system are simulated and calculated by numerical simulation method, and the parameters such as the maximum temperature difference, average temperature in the battery temperature field and the pressure difference between the inlet and outlet of the coolant under different coolant flows are analyzed. The results show that the parallel channel structure cold plate is lower than the serial channel structure cold plate in terms of its own energy consumption and the average temperature of the battery, but the uniformity of the battery temperature field under the cooling of the latter is better than the former. In order to improve the uniformity of the temperature field of the parallel structure cooling plate, optimization was carried out by adding a graphite plate with a thickness of 0.6mm between the contact surface of the battery and the cooling plate. After optimization, the maximum temperature difference of the battery temperature field was significantly reduced compared with that before optimization. When the flow was 5.4 × 10?4 kg/s, the maximum temperature difference of the battery before and after the optimization of the cooling plate is 6.49 K and 4.51 K, respectively, with a decrease of 30.51%. The optimized parallel structure liquid cooling plate has obvious advantages over the serial structure in parameters such as the average temperature and the maximum temperature difference of the battery temperature field as well as its own energy consumption. This result will provide some basis for the design of a liquid cooling plate with a parallel channel structure in the actual large capacity battery thermal management system.

References

[1]  李方生, 赵世佳, 胡友波. 欧洲新能源汽车产业发展动向及对我国的启示[J]. 汽车工程学报, 2021, 11(3): 157-163.
[2]  李仲兴, 李颖, 周孔亢, 等. 纯电动汽车不同行驶工况下电池组的温升研究[J]. 机械工程学报, 2014, 50(16): 180-185.
[3]  张剑波, 吴彬, 李哲. 车用动力锂离子电池热模拟与热设计的研发状况与展望[J]. 集成技术, 2014, 3(1): 18-26.
[4]  陈玉红, 唐致远, 卢星河, 等. 锂离子电池爆炸机理研究[J]. 化学进展, 2006(6): 823-831.
[5]  Wu, W.X., Wang, S.F., Wu, W., et al. (2019) A Critical Review of Battery Thermal Performance and Liquid Based Battery Thermal Management. Energy Conversion and Management, 182, 262-281.
https://doi.org/10.1016/j.enconman.2018.12.051
[6]  田甜. 一种电动车锂电池包热管理系统的设计与分析[J]. 电子技术与软件工程, 2021(11): 217-218.
[7]  陈果, 闰仕伟, 黄一峰, 等. 纯电动汽车电池热管理风冷与液冷[J]. 汽车与配件, 2014(6): 40-42.
[8]  宋俊杰, 王义春, 王腾. 动力电池组分层风冷式热管理系统仿真[J]. 化工进展, 2017, 36(S1): 187-194.
[9]  Zhou, H.B., Zhou, F., Xu, L.P., et al. (2019) Thermal Performance of Cylindrical Lithium-Ion Battery Thermal Management System Based on Air Distribution Pipe. International Journal of Heat and Mass Transfer, 131, 984-998.
https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.116
[10]  Zhang, F.R., Lin, A.Z., Wang, P.W., et al. (2021) Optimization Design of a Parallel Air-Cooled Battery Thermal Management System with Spoilers. Applied Thermal Engineering, 182, Article ID: 116062.
https://doi.org/10.1016/j.applthermaleng.2020.116062
[11]  Wang, Q., Jiang, B., Xue, Q.F., et al. (2015) Experimental Investigation on EV Battery Cooling and Heating by Heat Pipes. Applied Thermal Engineering, 88, 54-60.
https://doi.org/10.1016/j.applthermaleng.2014.09.083
[12]  Huo, Y.T., Rao, Z.H., Liu, X.J., et al. (2015) Investigation of Power Battery Thermal Management by Using Mini-Channel Cold Plate. Energy Conversion and Management, 89, 387-395.
https://doi.org/10.1016/j.enconman.2014.10.015
[13]  Gao, Q., Zhang, T.S., Wang, G.H., et al. (2017) Investigation on the Promotion of Temperature Uniformity for the Designed Battery Pack with Liquid Flow in Cooling Process. Applied Thermal Engineering, 116, 655-662.
https://doi.org/10.1016/j.applthermaleng.2017.01.069
[14]  张国庆, 饶中浩, 吴忠杰. 采用相变材料冷却的动力电池组的散热性能[J]. 化工进展, 2009, 28(1): 23-26+40.
[15]  罗明昀, 凌子夜, 方晓明, 等. 基于相变储热技术的电池热管理系统研究进展[J]. 化工进展, 2022, 41(3): 1594-1607.
[16]  吕兰. 基于变截面流道的动力电池组液冷系统设计及优化[D]: [硕士学位论文]. 长沙: 湖南大学, 2020.
[17]  魏增福, 曾国建, 刘新天, 等. 锂电池内阻特性建模[J]. 电源技术, 2018, 42(11): 1629-1631.
[18]  杨龙博. 交互式风冷动力电池热管理系统设计与研究[D]: [硕士学位论文]. 北京: 北京理工大学, 2018.
[19]  Cheng, K.W., Divakar, B.P., Wu, H.J., et al. (2011) Battery Management System (BMS) and SOC Development for Electrical Vehicles. IEEE Transactions on Vehicular Technology, 60, 76-88.
https://doi.org/10.1109/TVT.2010.2089647

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133