全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于缠绕成型工艺的新型贮箱设计方法
A Design Method of Tank Based on Winding Forming Process

DOI: 10.12677/JAST.2022.103007, PP. 64-74

Keywords: 复合材料贮箱,平面缠绕成型,连接结构,ABAQUS
Composite Material Storage Tank
, Plane Winding Forming, Connecting Structure, ABAQUS

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了提高运载火箭的运输效率以及降低火箭发射成本,采用复合材料贮箱代替金属贮箱是最直接、最有效的方式,本文提出一种新型无内衬复合材料贮箱的设计方案。针对某一尺寸的贮箱结构,采用平面缠绕的方法进行缠绕的线型设计,同时基于网格理论对缠绕的层数进行设计,提出贮箱筒段的缠绕方案;结合经典层合板理论,通过Tsai-Wu失效判据进行单角度强度校核保证贮箱整体结构的安全;提出上、下封头极孔处的连接结构形式以及通孔的设计过程;应用ABAQUS进行贮箱实体模型和设计内压下贮箱缠绕层、胶层和上下法兰连接结构的有限元模拟,讨论设计的贮箱结构的可行性和安全性。本文的研究工作为复合材料贮箱的成型加工提供了理论依据。
In order to improve the transport efficiency of carrier rocket and reduce the launching cost of rocket, the composite material storage tank instead of metal storage tank is the most direct and effective way. In this paper, a new design scheme of non-lined composite material storage tank is proposed. The design of the winding line and the winding layer is carried out based on the plane winding and the grid theory, and the winding scheme of the tank cylinder segment is put forward ultimately. Based on the classical laminated plate theory and Tsai-Wu failure criterion, single-angle strength checking is carried out to ensure the safety of the overall tank structure. The connecting structure of the upper and lower head pole hole and the design of the through hole are presented. By using ABAQUS, the solid model of the tank is established, and the finite element simulations of the winding layer, rubber layer, upper and lower flange connection structure of the tank under internal pressure are carried out. The feasibility and safety of the designed tank structure are discussed, and the improvement scheme for the existing problems in the design is proposed. The research work of this paper provides a theoretical basis for the forming of composite storage tanks.

References

[1]  范瑞祥, 容易. 我国新一代中型运载火箭的发展展望[J]. 载人航天, 2013, 19(1): 1-4.
[2]  黄诚, 刘德博, 吴会强, 常志龙. 我国航天运载器复合材料贮箱应用展望[J]. 沈阳航空航天大学学报, 2016, 33(2): 27-35.
[3]  于建, 晏飞. 可重复使用运载器复合材料低温贮箱应用研究[J]. 火箭推进, 2009, 35(6): 19-22.
[4]  Davis, S.E. and Herald, S.D. (2006) Guidelines for the Utilization of Composite Materials in Oxygen Storage Tanks. NASA Marshall Space Night Center.
[5]  黄诚, 雷勇军. 大型运载火箭低温复合材料贮箱设计研究进展[J]. 宇航材料工艺, 2015(2): 1-7.
[6]  朱平萍, 刘宪力. 大型贮箱结构及工艺性研究[J]. 航天制造技术, 2011(3): 42-45, 58.
[7]  辛腾达, 王华, 崔村燕, 等. 贮箱轻量化设计几何参数优化方法[J]. 西安交通大学学报, 2019, 53(7): 153-159.
[8]  任明法, 卜璠梓, 吴会强, 等. 飞行器异形复合材料贮箱设计与优化方法研究[J]. 宇航材料工艺, 2014(A01): 31-36.
[9]  沈观林, 胡更开. 复合材料力学[M]. 北京: 清华大学出版社, 2006.
[10]  施建伟. 基于ABAQUS复合材料层合板渐进损伤有限元分析[D]: [硕士学位论文]. 太原: 中北大学, 2015.
[11]  王耀先. 复合材料力学与结构设计[M]. 上海: 华东理工大学出版社, 2012.
[12]  Tapeinos, I.G., Koussios, S. and Groves, R.M. (2016) Design and Analysis of a Multi-Cell Subscale Tank for Liquid Hydrogen Storage. International Journal of Hydrogen Energy, 41, 3676-3688.
[13]  Ansary, A.M., Damatty, A.A. and Nassef, A.O. (2011) A Couple Finite Element Genetic Algorithm for Optimum Design of Stiffened Liquid-Filled Steel Conical Tanks. Thin-Walled Structures, 49, 482-493.
[14]  Fahmy, A.S. and Khalil, A.M. (2016) Wall Thickness Variation Effect on Tank’s Shape Behavior under Critical Harmonic Settlement. Alexandria Engineering Journal, 55, 3205-3209.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133