全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

On the Meromorphic Solutions of Fermat-Type Differential Equations

DOI: 10.4236/jamp.2022.109188, PP. 2820-2836

Keywords: Fermat-Type Equations, Differential Equations, Nevanlinna Theory

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper, we investigate the meromorphic solutions of the Fermat-type differential equations f’(z)n + f(z+c)m = eAz+B (c ≠ 0) over the complex plane C for positive integers m, n, and A, B, c are constants. Our results improve and extend some earlier results given by Liu et al. Moreover, some examples are presented to show the preciseness of our results.

References

[1]  Hayman, W.K. (1964) Meromorphic Functions. Clarendon Press, Oxford.
[2]  Yi, H.X. and Yang, C.C. (2003) Uniqueness Theory of Meromorphic Functions. Kluwer Academic Publishers, Dordrecht.
[3]  Chen, Z.X. (2014) Complex Differences and Difference Equations. Science Press, Beijing.
https://doi.org/10.1155/2014/124843
[4]  Laine, I. (1993) Nevanlinna Theory and Complex Differential Equations. Walter de Gruyte, Berlin.
https://doi.org/10.1515/9783110863147
[5]  Montel, P. (1927) Lecons sur les familles normales de fonctions analytiques et leurs applications. Gauthier Villars, Paris, 135-136.
[6]  Gross, F. (1966) On the Equation fn + gn = 1. I. Bulletin of the American Mathematical Society, 72, 86-88.
https://doi.org/10.1090/S0002-9904-1966-11429-5
[7]  Gross, F. (1968) On the Equation fn + gn = 1. II. Bulletin of the American Mathematical Society, 74, 647-648.
https://doi.org/10.1090/S0002-9904-1968-11975-5
[8]  Baker, I.N. (1966) On a Class of Meromorphic Functions. Proceedings of the American Mathematical Society, 17, 819-822.
https://doi.org/10.1090/S0002-9939-1966-0197732-X
[9]  Yang, C.C. (1970) A Generalization of a Theorem of P. Montel on Entire Functions. Proceedings of the American Mathematical Society, 26, 332-334.
https://doi.org/10.1090/S0002-9939-1970-0264080-X
[10]  Hu, P.C., Li, P. and Yang, C.C. (2003) Unicity of Meromorphic Mappings. Springer, Berlin.
https://doi.org/10.1007/978-1-4757-3775-2
[11]  Halburd, R.G. and Korhonen, R.J. (2006) Difference Analogue of the Lemma on the Logarithmic Derivative with Applications to Difference Equations. Journal of Mathematical Analysis and Applications, 314, 477-487.
https://doi.org/10.1016/j.jmaa.2005.04.010
[12]  Chiang, Y.M. and Feng, S.J. (2008) On the Nevanlinna Characteristic of f(z + η) and Difference Equations in the Complex Plane. The Ramanujan Journal, 16, 105-129.
https://doi.org/10.1007/s11139-007-9101-1
[13]  Liu, K., Cao, T.B. and Cao, H.Z. (2012) Entire Solutions of Fermat Type Differential-Difference Equations. Archiv der Mathematik, 99, 147-155.
https://doi.org/10.1007/s00013-012-0408-9
[14]  Liu, K., Yang, L.Z. and Liu, X.L. (2011) Existence of Entire Solutions of Nonlinear Difference Equations. Czechoslovak Mathematical Journal, 61, 565-576.
https://doi.org/10.1007/s10587-011-0075-1
[15]  Liu, K., Yang, L.Z. and Liu, X.L. (2013) On Entire Solutions of Some Differential-Difference Equations. Computational Methods and Function Theory, 13, 433-447.
https://doi.org/10.1007/s40315-013-0030-2
[16]  Lü, F. and Han, Q. (2017) On the Fermat-Type Equation f3(z) + f3(z + c) = 1. Aequationes Mathematicae, 91, 129-136.
https://doi.org/10.1007/s00010-016-0443-x
[17]  Lü, F. and Han, Q. (2019) On the Equation fn(z) + gn(z) = eAz+B. Journal of Contemporary Mathematical Analysis, 54, 98-102.
https://doi.org/10.3103/S1068362319020067
[18]  Xu, H.Y., Liu, S. and Wang, H. (2021) Entire Solutions for Several Second-Order Partial Differential-Difference Equations of Fermat Type with Two Complex Variables. Advances in Difference Equations, 1, 1-24.
https://doi.org/10.1186/s13662-020-03201-y
[19]  Steinmetz, N. (1978) Zur wertverteilung von exponentialpolynomen. Manuscripta Mathematica, 26, 155-167.
https://doi.org/10.1007/BF01167971
[20]  Yang, L. (1993) Value Distribution Theory. Springer-Verlag, Berlin.
[21]  Goldberg, A.A. and Ostrovskii, I.V. (2008) Value Distribution of Meromorphic Functions. American Mathematical Society, Providence.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133