全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Thermodynamic Interpretation of Electron Density and Temperature Description in the Solar Corona

DOI: 10.4236/aast.2022.73010, PP. 146-174

Keywords: Solar Corona, Density, Temperature and Polytropic Anomalous Index

Full-Text   Cite this paper   Add to My Lib

Abstract:

We reach a thermodynamic interpretation of the CODET model and its accurate electron density and temperature prediction, grounded on the physics of hydro magnetism in global equilibrium. The thermodynamic interpretation finds consistency with the model of a magneto-matter medium possessing a 3-D Langmuir structure. That medium is diamagnetic in the context of ideal magnetohydrodynamic (MHD). It is shown that this magneto-matter has unusual characteristics consistent with assuming that the low quiescent solar corona possesses a nature-state, non yet studied. It is further noticed that this is wholly consistent with the CODET model prediction of a polytropic anomalous index for the electron gas of the Sun’s corona. Constitutive properties are derived from this novel state of nature, like magnetic permeability properties and non-dispersive acoustic speed. This non-dispersive acoustic speed is also expected to predict the observed equilibration time for the 1.1 to 1.3R quiescent corona during the solar minimum from 2008 to 2009.

References

[1]  Howard, R.A., Vourlidas, A., Bothmer, V., Colaninno, R.C., DeForest, C.E., Gallagher, B., Hall, J.R., Hess, P., Higginson, A.K., Korendyke, C.M., Kouloumvakos, A., Lamy, P.L., Liewer, P.C., Linker, J., Linton, M., Penteado, P., Plunkett, S.P., Poirier, N., Raouafi, N.E. and Rich. (2019) Near-Sun Observations of an F-corona Decrease and K-Corona Fine Structure. Nature, 576, 232-236.
https://doi.org/10.1038/s41586-019-1807-x
[2]  Aschwanden, M.J. (2019) New Millennium Solar Physics. Astrophysics and Space Science Library, Volume 458. Springer Nature, Berlin.
https://doi.org/10.1007/978-3-030-13956-8
[3]  Aschwanden, M.J. (2005) Physics of the Solar Corona. An Introduction with Problems and Solutions. 2nd Edition, Praxis Publishing Ltd., Chichester, 892 p.
[4]  Berdichevsky, D., Rodríguez Gómez, J., Vieira, L. and Dal Lago, A. (2022) Validation of Novel Model for Identification of Thermal Conditions in the Low Corona. Advances in Aerospace Science and Technology, 7, 52-84.
https://doi.org/10.4236/aast.2022.71004
[5]  Berdichevsky, D.B., Rodríguez Gómez, J.M., Vieira, L. and dal Lago, A. (2020) Thermodynamics Interpretation of Electron Density and Temperature Description in the Solar Corona.
[6]  Rodríguez Gómez, J.M., Vieira, L., dal Lago, A. and Palacios, J. (2018) Coronal Electron Density, Temperature and Solar Spectral Irradiance during Solar Cycles 23 and 24. The Astrophysical Journal, 852, Article No. 137.
https://doi.org/10.3847/1538-4357/aa9f1c
[7]  Withbroe, G.L. (1988) The Temperature Structure, Mass, and Energy Flow in the Corona and Inner Solar Wind. The Astrophysical Journal, 325, 442-467.
https://doi.org/10.1086/166015
[8]  Sanchez-Diaz, E., Rouillard, A.P., Lavraud, B., Segura, K., Tao, C., Pinto, R., Sheeley, N.R.J. and Plotnikov, I. (2016) The Very Slow Solar Wind: Properties, Origin and Variability. Journal of Geophysical Research: Space Physics, 121, 2830-2841.
https://doi.org/10.1002/2016JA022433
[9]  Vasquez, B.J., Farrugia, C.J., Simmunac, K.D.C., Galvin, A.B. and Berdichevsky, D.B. (2017) Concerning the Helium-to-Hydrogen Number Density Ratio in Very Slow Ejecta and Winds near Solar Minimum. Journal of Geophysical Research: Space Physics, 122, 1487-1512.
https://doi.org/10.1002/2016JA023636
[10]  Burlaga, L.F., Ness, N.F., Gurnett, D.A. and Kurt, W.S. (2013) Evidence for a Shock in Interstellar Plasma: Voyager 1. The Astrophysical Journal Letters, 778, L3.
https://doi.org/10.1088/2041-8205/778/1/L3
[11]  Richardson, J.D., Wang, C., Liu, Y.D., Safránková, J., NěmeCek, Z. and Kurth, W.S. (2017) Pressure Pulses at Voyager 2: Drivers of Interstellar Transients? The Astrophysical Journal, 834, Article No. 190.
https://doi.org/10.3847/1538-4357/834/2/190
[12]  Cummings, A.C., Stone, E.C., Hikkila, B.C., Lal, N., Webber, W.R., Johannsson, G., Moskalenko, I.V., Orlando, E. and Porter, T.A. (2016) Galactic Cosmic Rays in the Local Interstellar Medium Voyager 1 Observations and Model Results. The Astrophysical Journal, 831, Article No. 18.
https://doi.org/10.3847/0004-637X/831/1/18
[13]  Zhao, J., Kosovichev, A.G. and Sekii, T. (2010) High-Resolution Helioseismic Imaging of Subsurface Structures and Flows of a Solar Active Region Observed by Hinode. The Astrophysical Journal, 708, 304-313.
https://doi.org/10.1088/0004-637X/708/1/304
[14]  Klimchuk, J.A. (2006) On Solving the Coronal Heating Problem. Solar Physics, 234, 41-77.
https://doi.org/10.1007/s11207-006-0055-z
[15]  de Pontieu, B., McIntosh, S., Hansteen, V.H., Carlsson, M. and Schrijver, C.J. (2007) A Tale of Two Spicules: The Impact of Spicules on the Magnetic Chromosphere. Publications of the Astronomical Society of Japan, 59, S655-S662.
https://doi.org/10.1093/pasj/59.sp3.S655
[16]  Raouafi, N.E., Patsourakos, S., Pariat, E., Young, P.R., Sterling, A.C., Savcheva, A., Shimojo, M., Moreno-Insertis, F., DeVore, C.R., Archontis, V., Török, T., Mason, H., Curdt, W., Meyer, K., Dalmasse, K. and Matsui (2016) Solar Coronal Jets: Observations, Theory, and Modeling. Space Science Reviews, 201, 1-53.
https://doi.org/10.1007/s11214-016-0260-5
[17]  Zurbuchen, T.H., Schadron, N.A. and Fisk, L.A. (1997) Direct Observational Evidence for a Heliospheric Magnetic Field with Large Excursions in Latitude. Journal of Geophysical Research, 102, 24175-24181.
https://doi.org/10.1029/97JA02194
[18]  Fisk, L.A. (1996) Motion of the Footpoints of Heliosphere Magnetic Field Lines at the Sun: Implications for Recurrent Energetic Particle Events at High Heliographic Latitudes. Journal of Geophysical Research, 101, 15547-15554.
https://doi.org/10.1029/96JA01005
[19]  Rodríguez Gómez, J.M. (2017) Evolution of the Electron Density, Temperature Distribution in the Solar Corona during Solar Cycles 23 and 24. PhD Thesis, Instituto Nacional de Pesquisas Espaciais (INPE), São Paulo.
http://urlib.net/8JMKD3MGP3W34P/3NCJQLB
[20]  Vernazza, J.E., Avrett, E.H. and Loeser, R. (1981) Structure of the Solar Chromosphere. III. Models of the EUV Brightness Components of the Quiet Sun. Astrophysical Journal, 45, 635-725.
https://doi.org/10.1086/190731
[21]  Berdichevsky, D.B. and Schefers, K. (2015) On the Thermodynamics and Other Constitutive Properties of a Class of Strongly Magnetized Matter Observed in Astrophysics. The Astrophysical Journal, 805, Article No. 70.
https://doi.org/10.1088/0004-637X/805/1/70
[22]  Dirac, P.M.A. (1967) The Principles of Quantum Mechanics. 4th Edition, Cambridge U. Press, Cambridge.
[23]  Hill, T.L. (1960) An Introduction to Statistical Thermodynamics. Addison-Wesley, Reading.
https://books.google.com/books?hl=en&lr=&id=QttFDwAAQBAJ&oi=fnd&pg=PP1&dq=An+introduction+to+statistical+thermodynamics&ots=_P7AZsbyHP&sig=zuYFIxpJjHfWh_710mtRmB1YayI#v=onepage&q=An%20introduction%20to%20statistical%20thermodynamics&f=false
[24]  Ziman, J.M. (1960) Electrons and Phonons. The Theory of Transport Phenomena in Solids. Clarendon Press, Oxford.
https://books.google.com/books/about/Electrons_and_Phonons.html?id=_HEsAAAAYAAJ
[25]  Langmuir, I. (1916) The Constitution and Fundamental Properties of Solids and Liquids, Part I, Solids. Journal of the American Chemical Society, 38, 2221-2295.
https://doi.org/10.1021/ja02268a002
[26]  Langmuir, I. and Taylor, J.B. (1932) The Mobility of Caesium Atoms Adsorbed on Tungsten. Physical Review, 40, 463-464.
https://doi.org/10.1103/PhysRev.40.463
[27]  Osherovich, V.A., Farrugia, C.J., Burlaga, L.F., Lepping, R.P., Feinberg, J. and Stone, R.D. (1993) Polytropic Relationship in Interplanetary Magnetic Clouds. Journal of Geophysical Research, 98, 15,331-15,342.
https://doi.org/10.1029/93JA01012
[28]  Osherovich, V.A., Fainberg, J., Stone, R.G., MacDowall, R.J. and Berdichevsky, D.B. (1997) Self-Similar Evolution of Interplanetary Magnetic Clouds and Ulysses Measurements of the Polytropic Index inside the Cloud. Proceedings 31st ESLAB Symposium, Correlated Phenomena at the Sun in Heliosphere and in Geospace, Noordwijk, The Netherlands, 22-25 September 1997, 171-175.
[29]  Osherovich, V.A., Fainberg, J., Stone, R.G., FItzenreiter, R. and Viñas, A.F. (1998) Measurements of Polytropic Index in the January 10-11, 1997 Magnetic Cloud Observed by Wind. Geophysical Research Letters, 25, 3003-3006.
https://doi.org/10.1029/98GL00547
[30]  Farrugia, C.J., Osherovich, V.A. and Burlaga, L.F. (1995) Magnetic Flux Rope versus the Spheromak as Models for Interplanetary Magnetic Clouds. Journal of Geophysical Research, 100, 12293-12306.
https://doi.org/10.1029/95JA00272
[31]  Sittler, E.C. and Burlaga, L.F. (1998) Electron Temperatures within Magnetic Clouds between 2 and 4 AU: Voyager 2 Observations. Journal of Geophysical Research, 103, 17447-17454.
https://doi.org/10.1029/98JA01289
[32]  Burlaga, L.F. (1995) Interplanetary Magnetohydrodynamics. International Series in Astronomy and Astrophysics, Vol. 3, Oxford University Press, Oxford, 272 p.
[33]  Marubashi, K. (1997) Interplanetary Magnetic Flux Ropes and Solar Filaments, Coronal Mass Ejections. In: Crooker, N., Joselyn, J. and Feynman, J., Eds., Geophysical Monograph Series 99, AGU, Washington DC, 147-156.
https://doi.org/10.1029/GM099p0147
[34]  Berdichevsky, D.B. (2013) On Fields and Mass Constraints for the Uniform Propagation of Magnetic-Flux-Ropes Undergoing Isotropic Expansion. Solar Physics, 284, 245-259.
https://doi.org/10.1007/s11207-012-0176-5
[35]  Berdichevsky, D.B., Lepping, R.P. and Farrugia, C.J. (2003) Geometric Considerations of the Evolution of Magnetic Flux Ropes. Physical Review E, 67, Article ID: 036405.
https://doi.org/10.1103/PhysRevE.67.036405
[36]  Zemansky, M.W. (1957) Heat and Thermodynamics. McGraw-Hill Book Co., New York.
https://www.goodreads.com/book/show/26257955-heat-and-thermodynamics--sie
[37]  Mann, G., Aurass, H., Klassen, A., Estel, G. and Thompson, B.J. (1999) Coronal Transient Waves and Coronal Shock Waves. Proceedings 8th SOHO Workshop “Plasma Dynamics and Diagnostics in the Solar Transition Region and Corona”, Paris, 22-25 June 1999, ESA SP-446.
[38]  Myers, H.P. (1990) Introductory Solid-State Physics. Taylor and Francis, London.
https://doi.org/10.1201/9781315273303
[39]  Gopalswamy, N., Lara, A., Kaiser, M.L. and Bougeret, J.-L. (2001) Near-Sun and Near-Earth Manifestations of Solar Eruptions. Journal of Geophysical Research, 106, 25261-25277.
https://doi.org/10.1029/2000JA004025
[40]  Habbal, S.R., Druckmüller, M., Morgan, H., Daw, A., Johnson, J., Ding, A., Arndt, M., Esser, R., Rusin, V. and Scholl, I. (2010) Mapping the Distribution of Electron Temperature and Fe Charge States in the Corona with Total Eclipse Observations. The Astrophysical Journal, 708, 1650-1662.
https://doi.org/10.1088/0004-637X/708/2/1650
[41]  Kennel, C.F., Edmiston, J.P. and Hada, T. (1985) A Quarter Century of Collisionless Shock Research. In: Stone, R.G. and Tsurutani, B.T., Eds., Collisionless Shocks in the Heliosphere: A Tutorial Review, AGU, Washington DC, 1-36.
https://doi.org/10.1029/GM034p0001
[42]  Hau, L.N. and Wang, B.-J. (2016) Slow Shock and Rotational Discontinuity in MHD and Hall MHD Models with Anisotropic Pressure. Journal of Geophysical Research: Space Physics, 121, 6245-6261.
https://doi.org/10.1002/2016JA022722
[43]  Landau, L.D. and Lifshiftz, E.M. (1960) Electrodynamics of Continuous Media, Vol. 8 of a Course of Theoretical Physics. Translated from Russian by Sykes, L.D. and Bell, J.S., Pergamon Press Ltd., Oxford.
[44]  Bingham, R., Shukla, P.K., Eliasson, B. and Stenflo, J. (2010) Solar Coronal Heating by Plasma Waves. Journal of Plasma Physics, 76, 135-158.
https://doi.org/10.1017/S0022377809990031
[45]  Gekelman, W. (1999) Review of Laboratory Experiments on Alfvén Waves and Their Relationship to Space Observations. Journal of Geophysical Research, 104, 14417-14435.
https://doi.org/10.1029/98JA00161
[46]  Shukla, P.K., Stenflo, L., Bingham, R. and Eliasson, B. (2004) Nonlinear Effects Associated with Dispersive Alfvén Waves in Plasmas. Plasma Physics and Controlled Fusion, 46, B349.
https://doi.org/10.1088/0741-3335/46/12B/030
[47]  Sundkvist, D., Krasnoselskikh, V., Shukla, P.K., Vaivads, A. andre, M., Buchert, S. and Reme, H. (2005) In Situ Multi-Satellite Detection of Coherent Vortices as a Manifestation of Alfvénic Turbulence. Nature, 436, 825-828.
https://doi.org/10.1038/nature03931
[48]  Sagdeev, R.Z., Shapiro, V.D. and Shevchenko, V.I. (1978) Excitation of Convective Cells by Alfvén Waves. JETP Letters, 27, 340.
[49]  Goodman, M. (1992) On Driven Dissipative, Energy-Conserving Magnetohydrodynamic Equilibria. Journal of Plasma Physics, 48, 177-202.
https://doi.org/10.1017/S0022377800016482
[50]  Goodman, M. (1993) Driven, Dissipative, Energy-Conserving Magnetohydrodynamic Equilibria. Part II. The Screw Pinch. Journal of Plasma Physics, 49, 125-159.
https://doi.org/10.1017/S002237780001686X
[51]  Brooks, D.H. and Warren, H.P. (2016) Measurements of Non-Thermal Line Widths in Solar Active Regions. The Astrophysical Journal, 820, Article No. 63.
https://doi.org/10.3847/0004-637X/820/1/63
[52]  Isenberg, P.A., Lee, M.A. and Hollweg, J.V. (1999) A Kinetic Model of Coronal Heating and Acceleration by Ion-Cyclotron Waves: Preliminary Results. Solar Physics, 193, 247-257.
https://doi.org/10.1007/978-94-010-0860-0_16
[53]  Isenberg, P.A. and Hollweg, J.V. (1982) Finite Amplitude Alfven Waves in a Multi-Ion Plasma’ Propagation, Acceleration, and Heating. Journal of Geophysical Research, 87, 5023-5029.
https://doi.org/10.1029/JA087iA07p05023
[54]  Kasper, J.C., Lazarus, A.J. and Gary, S.P. (2008) Hot Solar-Wind Helium: Direct Evidence for Local Heating by Alfvén-Cyclotron Dissipation. Physical Review Letters, 101, Article ID: 261103.
https://doi.org/10.1103/PhysRevLett.101.261103
[55]  Dmitruck, P., Matthæus, W.H., Seenu, N. and Brown, M.R. (2003) Test Particle Acceleration in Three-Dimensional Magnetohydrodynamic Turbulence. The Astrophysical Journal, 597, L81-L84.
https://doi.org/10.1086/379751
[56]  Schwenn, R. and Marsch, E. (1990) Physics of the Inner Heliosphere. Volumes I and II. Springer Verlag, Berlin.
https://doi.org/10.1007/978-3-642-75361-9
[57]  Antiochos, S.K. (2013) Helicity Condensation as the Origin of Coronal and Solar Wind structure. The Astrophysical Journal, 772, Article No. 72.
https://doi.org/10.1088/0004-637X/772/1/72
[58]  Saito, K., Poland, A.I. and Munro, R.H. (1977) A Study of the Background Corona near Solar Minimum. Solar Physics, 55, 121-134.
https://doi.org/10.1007/BF00150879
[59]  Langmuir, I. (1932) Surface Chemistry, Nobel Lecture, December.
[60]  Alfvén, H. (1942) Existence of Electromagnetic-Hydromagnetic Waves. Nature, 150, 405-406.
https://doi.org/10.1038/150405d0
[61]  Robitaille, P.-M. (2013) The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere V. On the Nature of the Corona. Progress in Physics, 3, L30-L36.
[62]  Pauling, L. (1960) The Nature of the Chemical Bond and the Structure of Molecules and Crystals, III. Cornell University Press, Ithaka.
http://boscoh.com/pdf/pauling.pdf
[63]  Spitzer, L. (1956) Plasma Physics. Interscience Tracts on Physics and Astronomy.
[64]  Braguinskii, S.I. (1965) Transport Processes in a Plasma. Reviews of Plasma Physics, Volume 1. Authorized Translation from the Russian by Herbert Lashinsky, Consultants Bureau, New York.
[65]  De Pontieu, B., McIntosh, S.W., Hansteen, V.H. and Schrijver, C.J. (2009) Observing the Roots of Solar Coronal Heating-In the Chromosphere. The Astrophysical Journal, 701, L1.
https://doi.org/10.1088/0004-637X/701/1/L1
[66]  De Pontieu, B., McIntosh, S.W., Carlsson, M., Hansteen, V.H., Tarbell, T.D., Boerner, P., Martinez-Zycora, J., Schreiver, C.J. and Title, A.M. (2011) The Origins of Hot Plasma in the Solar Corona. Science, 331, 55-58.
https://doi.org/10.1126/science.1197738
[67]  Kennel, C., Edmiston, J. and Hada, T. (1985) A Quarter Century of Collisionless Shock Research. In: Collisionless Shocks in the Heliosphere: A Tutorial Review (A87-25326 09-92), American Geophysical Union, Washington DC, 1-36.
https://doi.org/10.1029/GM034p0001

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133