全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Graphene  2022 

Investigation of Ceramic Based Composites by Using 2D Graphene Filler

DOI: 10.4236/graphene.2022.112002, PP. 19-29

Keywords: Sodium Bismuth Titanate, Graphene Oxide, Reduce Graphene Oxide, Electrical Conductivity

Full-Text   Cite this paper   Add to My Lib

Abstract:

The ceramic composites of sodium bismuth titanate with reduce graphene oxide NBT/rGO of different compositions were fabricated by solid state sintering method and characterized. In this work, the graphene oxide (GO) and reduce graphene oxide (rGO) was successfully synthesized by Hummer’s modified method which is confirmed by FTIR and XRD results. The reduce graphene oxide used as 2D filler in piezoelectric creamic material. The crystalline structure of NBT/rGO composite was confirmed by X-ray diffraction with rhombohedral symmetry. The dispersion of rGO in the ceramic can be detect by the optical microcopy images. The electrical conductivity of sodium bismuth titanate shows increase at higher values of frequency and conductivity nanocomposites of different wt% were start decreases up to certain value of frequency. The broadening of peaks in frequency explicit plots of electrical conductivity with the help of LCR Meter (Impedance Capacitance and Resistance). The crystalline size of reduced graphene oxide and NBT is calculated by Scherrer’s formula of XRD peaks.

References

[1]  Wang, C., Zhao, L., Liu, Y., Withers, R.L., Zhang, S. and Wang, Q. (2016) The Temperature-Dependent Piezoelectric and Electromechanical Properties of Cobalt-Modified Sodium Bismuth Titanate. Ceramics International, 42, 4268-4273.
https://doi.org/10.1016/j.ceramint.2015.11.103
[2]  Benyoussef, M., Zannen, M., Belhadi, J., Manoun, B. and Dellis, J. (2018) Dielectric, Ferroelectric, and Energy Storage Properties in Dysprosium Doped Sodium Bismuth Titanate Ceramics. Ceramics International, 44, 19451-19460.
https://doi.org/10.1016/j.ceramint.2018.07.182
[3]  Sangsubun, C. (2015) Fabrication and Characterization of Bismuth Sodium Titanate Ceramics by High-Energy Ball Milling Technique. Ceramics International, 41, S180-S184.
https://doi.org/10.1016/j.ceramint.2015.03.123
[4]  Shi, R., et al. (2019) Particle Transport Mode during Flash Sintering of Sodium Bismuth Titanate Ceramic. Ceramics International, 45, 13269-13274.
https://doi.org/10.1016/j.ceramint.2019.04.015
[5]  Reichmann, K., Feteira, A. and Li, M. (2015) Bismuth Sodium Titanate Based Materials for Piezoelectric Actuators. Materials, 8, 8467-8495.
https://doi.org/10.3390/ma8125469
[6]  Rao, C.N.R., Sood, A.K., Subrahmanyam, K.S. and Govindaraj, A. (2009) Graphene: The New Two-Dimensional Nanomaterial. Angewandte Chemie, 48, 7752-7777.
https://doi.org/10.1002/anie.200901678
[7]  Xia, K., Zhan, H. and Gu, Y. (2017) Graphene and Carbon Nanotube Hybrid Structure: A Review. Procedia IUTAM, 21, 94-101.
https://doi.org/10.1016/j.piutam.2017.03.042
[8]  Leggett, L.A.J. (2010) Lecture 5: Graphene: Electronic Band Structure and Dirac Fermions. 1-12.
[9]  Qin, H., Sun, Y., Zhe, J. and Liu, Y. (2010) Mechanical Properties of Wrinkled Graphene Generated by Topological Defects. Carbon, 108, 204-214.
https://doi.org/10.1016/j.carbon.2016.07.014
[10]  Shevitski, B. (2010) Structural Properties of Graphene and Carbon Nanotubes. University of California Los Angeles, Los Angeles, CA.
[11]  Moon, P. and Koshino, M. (2013) Optical Absorption in Twisted Bilayer Graphene. Physical Review B, 87, Article ID: 205404.
https://doi.org/10.1103/PhysRevB.87.205404
[12]  Rozhkov, A.V., et al. (2011) Electronic Properties of Mesoscopic Graphene Structures: Charge Confinement and Control of Spin and Charge Transport. Physics Reports, 503, 77-114.
[13]  Jaiswal, M. (2017) Graphene: A Review of Optical Properties and Photonic Applications. Asian Journal of Physics, 25, 809-831.
[14]  Zaaba, N.I., Foo, K.L., Hashim, U., Tan, S.J., Liu, W. and Voon, C.H. (2017) Synthesis of Graphene Oxide Using Modified Hummers Method: Solvent Influence. Procedia Engineering, 184, 469-477.
https://doi.org/10.1016/j.proeng.2017.04.118
[15]  Journal, I., Energy, R. and Issn, E.E. (2014) Graphene Oxide Synthesized by Using Modified Hummers Approach. International Journal of Renewable Energy and Environmental Engineering, 2, 58-63.
[16]  Chen, J., Yao, B., Li, C. and Shi, G. (2013) An Improved Hummers Method for Eco-Friendly Synthesis of Graphene Oxide. Carbon, 64, 225-229.
https://doi.org/10.1016/j.carbon.2013.07.055
[17]  Pei, S. and Cheng, H.M. (2012) The Reduction of Graphene Oxide. Carbon, 50, 3210-3228.
https://doi.org/10.1016/j.carbon.2011.11.010
[18]  Ghorbani, M., Abdizadeh, H. and Golobostanfard, M.R. (2015) Reduction of Graphene Oxide via Modified Hydrothermal Method. Procedia Materials Science, 11, 326-330.
https://doi.org/10.1016/j.mspro.2015.11.104
[19]  Shi, J., Du, W., Yin, Y., Guo, Y. and Wan, L. (2014) Hydrothermal Reduction of Three-Dimensional Graphene Oxide for Binder-Free Flexible Supercapacitors. Journal of Materials Chemistry A, 2, 1-10.
https://doi.org/10.1039/c4ta01547a
[20]  Porwal, H., Grasso, S. and Reece, M.J. (2013) Review of Graphene-Ceramic Matrix Composites. Advances in Applied Ceramics, 112, 443-454.
https://doi.org/10.1179/174367613X13764308970581
[21]  Phiri, J., Gane, P. and Maloney, T.C. (2017) General Overview of Graphene: Production, Properties and Application in Polymer Composites. Materials Science and Engineering: B, 215, 9-28.
https://doi.org/10.1016/j.mseb.2016.10.004
[22]  Liu, J., Yan, H. and Jiang, K. (2013) Mechanical Properties of Graphene Platelet-Reinforced Alumina Ceramic Composites. Ceramics International, 39, 6215-6221.
https://doi.org/10.1016/j.ceramint.2013.01.041
[23]  Walker, L.S., Marotto, V., et al. (2011) Toughening in Graphene Ceramic Composites. ACS Nano, 5, 3182-3190.
https://doi.org/10.1021/nn200319d
[24]  Miranzo, P., Belmonte, M. and Osendi, M.I. (2017) From Bulk to Cellular Structures: A Review on Ceramic/Graphene Filler Composites. Journal of the European Ceramic Society, 37, 3649-3672.
https://doi.org/10.1016/j.jeurceramsoc.2017.03.016
[25]  Huang, H., Tang, J. and Liu, J. (2019) Preparation of Na0.5Bi0.5TiO3 Ceramics by Hydrothermal-Assisted Cold Sintering. Ceramics International, 45, 6753-6758.
https://doi.org/10.1016/j.ceramint.2018.12.166
[26]  Petrus, M., Wozniak, J., Cygan, T., Adamczyk-Cieslak, B. Kostecki, M. and Olszyna, A. (2017) Sintering Behaviour of Silicon Carbide Matrix Composites Reinforced with Multilayer Graphene. Ceramics International, 43, 5007-5013.
https://doi.org/10.1016/j.ceramint.2017.01.010
[27]  Alam, S.N., Sharma, N. and Kumar, L. (2017) Synthesis of Graphene Oxide (GO) by Modified Hummers Method and Its Thermal Reduction to Obtain Reduced Graphene Oxide (rGO). Graphene, 6, 1-18.
https://doi.org/10.4236/graphene.2017.61001
[28]  Zaaba, N.I., Foo, K.L., Hashim, U., Tan, S.J., Liu, W.W. and Voon, C.H. (2017) Synthesis of Graphene Oxide Using Modified Hummers Method: Solvent Influence. Procedia Engineering, 184, 469-477.
https://doi.org/10.1016/j.proeng.2017.04.118
[29]  Porwal, H. (2015) Processing and Properties of Graphene Reinforced Glass/Ceramic Composites. Queen Mary University of London, London.
[30]  Falkovsky, L.A. (2008) Optical Properties of Graphene. Journal of Physics: Conference Series, 129, Article ID: 012004.
[31]  Silvestre, J., Silvestre, N. and De Brito, J. (2015) An Overview on the Improvement of Mechanical Properties of Ceramics Nanocomposites. Journal of Nanomaterials, 2015, Article ID: 106494.
https://doi.org/10.1155/2015/106494
[32]  Muñoz-Ferreiro, C., et al. (2019) Microstructure, Interfaces and Properties of 3YTZP Ceramic Composites with 10 and 20 vol% Different Graphene-Based Nanostructures as Fillers. Journal of Alloys and Compounds, 777, 213-224.
https://doi.org/10.1016/j.jallcom.2018.10.336
[33]  Zeller, F., Müller, C., Miranzo, P. and Belmonte, M. (2017) Exceptional Micromachining Performance of Silicon Carbide Ceramics by Adding Graphene Nanoplatelets. Journal of the European Ceramic Society, 37, 3813-3821.
https://doi.org/10.1016/j.jeurceramsoc.2017.03.072
[34]  Ayrikyan, A., et al. (2018) Investigation of Residual Stress in Lead-Free BNT-Based Ceramic/Ceramic Composites. Acta Materialia, 148, 432-441.
https://doi.org/10.1016/j.actamat.2018.02.014

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133