The blood neutrophils to lymphocytes ratio (NLR) reflects the physiological homeostasis between lymphopoiesis and myelopoiesis, and its elevation serves as a harmful sign in many pathologies, partially, late rejection of allograft. The stem and young lymphoid cells have regenerative-trophic properties, which can affect the relevance of NLR, being opposed to immune properties, associated with bulk lymphocytes. In the present article, we have analyzed for the first time the applicability of NLR’s analogs with stem and immature blood cells for monitoring harmful long-term shifting from lymphopoiesis to myelopoiesis in transplant’s recipients received conventional immunosuppressive treatment. In opposition to conventional NLR, the ratio of subpopulation of CD31 cells committed to the liver tissue by alfa-fetoprotein (AFP), seems sensitive enough for such monitoring several years after transplantation of the liver from the dead.
References
[1]
Fock, R.A., Blatt, S.L., Beutler, B., Pereira, J., Tsujita, M., de Barros, F.E.V. and Borelli, P. (2010) Study of Lymphocyte Subpopulations in Bone Marrow in a Model of Protein-Energy Malnutrition. Nutrition, 26, 1021-1028. https://doi.org/10.1016/j.nut.2009.08.026
[2]
Angelico, R., Parente, A. and Manzia, T.M. (2017) Using a Weaning Immunosuppression Protocol in Liver Transplantation Recipients with Hepatocellular Carcinoma: A Compromise between the Risk of Recurrence and the Risk of Rejection? Translational Gastroenterology and Hepatology, 2, 74. https://doi.org/10.21037/tgh.2017.08.07
[3]
Pravisani, R., Mocchegiani, F., Isola, M., Lorenzin, D., Adani, G.L., Cherchi, V., De Martino, M., Risaliti, A., Lai, Q., Vivarelli, M. and Baccarani, U. (2021) Postoperative Trends and Prognostic Values of Inflammatory and Nutritional Biomarkers after Liver Transplantation for Hepatocellular Carcinoma. Cancers, 13, 513. https://doi.org/10.3390/cancers13030513
[4]
Lin, B.-Y., Zhou, L., Geng, L., Zheng, Z.-Y., Jia, J.-J., Zhang, J., Yao, J. and Zheng, S.-S. (2015) High Neutrophil-Lymphocyte Ratio Indicates Poor Prognosis for Acute-on-Chronic Liver Failure after Liver Transplantation. World Journal of Gastroenterology, 21, 3317-3324. https://doi.org/10.3748/wjg.v21.i11.3317
[5]
Shoutko, A.N. (2021) The Possible Involvement of Apoptotic Decay of Terminal Deoxynucleotidyl Transferase-Positive Lymphocytes in the Reutilization of the Extracellular DNA Fragments by Surrounding Living Cells. Open Journal of Biophysics, 11, 371-382. https://doi.org/10.4236/ojbiphy.2021.114014
[6]
Huang, L., Zheng, Y., Yuan, X., Ma, Y., Xie, G., Wang, W., Chen, H. and Shen, L. (2017) Decreased Frequencies and Impaired Functions of the CD31+ Subpopulation in Treg Cells Associated with Decreased FoxP3 Expression and Enhanced Treg Cell Defects in Patients with Coronary Heart Disease. Clinical & Experimental Immunology, 187, 441-454. https://doi.org/10.1111/cei.12897
[7]
Shoutko, A.N., Gerasimova, O.A., Fedorov, V.A. and Zherebtsov, F.K. (2019) Non-Invasive Vibration-Stress of the Cirrhotic Liver of Patients Waiting for Transplantation Induces of Circulating CD133+ Stem Lymphocytes Committed Phenotypically toward the Liver. Open Journal of Biophysics, 9, 155-168. http://www.scirp.org/journal/ojbiphy https://doi.org/10.4236/ojbiphy.2019.93012
[8]
Shoutko, A.N., Gerasimova, O.A. and Mus, V.F. (2020) Lymphocyte Reproductive Activity at Lethal Diseases. In: Prime Archives in Genetics, Vide Leaf, Hyderabad, 1-25. https://doi.org/10.37247/PAG.1.2020.2
[9]
Shoutko, A.N., Gerasimova, O.A., Marchenko, N.V. and Zherebtsov, F.K. (2021) Induction of Circulating CD133+ Stem Cells Committed to Cirrhotic Livers in Waitlisted Patients Annuary. Russian Journal of Transplantology and Artificial Organs, 22, 43-51. https://doi.org/10.15825/1995-1191-2020-4-43-51
[10]
Le, J., Ha, V.L., Li, F., Camacho, V., Patel, S., Welner, R.S. and Parekh, C. (2019) Single Cell Transcriptome Mapping of Human Thymopoiesis Reveals a Continuum of Cell States during T-Lineage Specification and Commitment. Blood, 134, 1183. https://doi.org/10.1182/blood-2019-129886
[11]
Sales-Pardo, I., Avendaño, A., Martinez-Muñoz, V., García-Escarp, M., Celis, R., Whittle, P., Barquinero, J., Domingo, J.C., Marin, P., Petriz, J., et al. (2006) Flow Cytometry of the Side Population: Tips and Tricks. Cellular Oncology, 28, 37-53. https://www.ncbi.nlm.nih.gov/pubmed/16675880 https://doi.org/10.1155/2006/536519
[12]
The Human Protein Atlas. Sections: Tissue Cell Type. https://www.proteinatlas.org/about/licence#citation_guidelines_for_the_human_protein_atlas
[13]
Shoutko, A.N. (2022) Tissues Protein Microenvironment and Survival by Age at Cancers. Acta Scientific Cancer Biology, 6, Article No. 7. https://actascientific.com/ASCB/ASCB-06-0380.php
[14]
Lombard, C.A., Prigent, J. and Sokal, E.M. (2013) Human Liver Progenitor Cells for Liver Repair. Cell Medicine, 5, 1-16. https://doi.org/10.3727/215517913X666459
[15]
Gore, S.D., Kastan, M. and Civin, C.I. (1991) Normal Human Bone Marrow Precursors That Express Terminal Deoxynucleotidyl Transferase Include T-Cell Precursors and Possible Lymphoid Stem Cells. Blood, 77, 1681-1690. https://doi.org/10.1182/blood.V77.8.1681.1681
[16]
Schwartzenberg, S., Mor, A., Luboshits, G., Planer, D., Deutsch, V., Keren, G. and George, J. (2005) Association between Circulating Early Endothelial Progenitors and CD4+ CD25+ Regulatory T Cells: A Possible Cross-Talk between Immunity and Angiogenesis? American Journal of Immunology, 1, 143-147. https://doi.org/10.3844/ajisp.2005.143.147
[17]
Takahashi, M., Matsuoka, Y., Sumide, K., Nakatsuka, R., Fujioka, T., Kohno, H., Sasaki, Y., Matsui, K., Asano, H., Kaneko, K. and Sonoda, Y. (2014) CD133 Is a Positive Marker for a Distinct Class of Primitive Human Cord Blood-Derived CD34-Negative Hematopoietic Stem Cells. Leukemia, 28, 1308-1315. https://doi.org/10.1038/leu.2013.326
[18]
Radtke, S., Haworth, K.G. and Kiem, H.-P. (2015) CD133+ CD34+ HSPCs Are Not Significantly Increased in Fetal Liver Compared to Adult or Umbilical Cord HSPCs. Blood, 126, 2369. https://doi.org/10.1182/blood.V126.23.2369.2369
[19]
Billaud, M., Donnenberg, V.S., Ellis, B.W., Meyer, E.M., Donnenberg, A.D., Hill, J.C., Richards, T.D., Gleason, T.G. and Phillippi, J.A. (2017) Classification and Functional Characterization of Vasa Vasorum-Associated Perivascular Progenitor Cells in Human Aorta. Stem Cell Reports, 9, 292-303. https://doi.org/10.1016/j.stemcr.2017.04.028
[20]
Mackay, L.S., Dodd, S., Dougall, I.G., Tomlinson, W., Lordan, J., Fisher, A.J. and Corris, P.A. (2013) Isolation and Characterisation of Human Pulmonary Microvascular Endothelial Cells from Patients with Severe Emphysema. Respiratory Research, 14, Article No. 23. https://doi.org/10.1186/1465-9921-14-23
[21]
Wang, C., Li, Y., Yang, M., Zou, Y., Liu, H., Liang, Z., Yin, Y., Niu, G., Yan, Z. and Zhang, B. (2018) Efficient Differentiation of Bone Marrow Mesenchymal Stem Cells. European Journal of Vascular and Endovascular Surgery, 55, 257-265. https://doi.org/10.1016/j.ejvs.2017.10.012
[22]
Abdellatif, H. and Shiha, G. (2018) PD-L1 Expression on Circulating CD34+ Hematopoietic Stem Cells Closely Correlated with T-Cell Apoptosis in Chronic Hepatitis C Infected Patients. International Journal of Stem Cells, 11, 78-86. https://doi.org/10.15283/ijsc17047
[23]
Bakhashab, S., Ahmed, F.W., Schulten, H.-J., Bashir, A., Karim, S., Al-Malki, A.L., Gari, M.A., Abuzenadah, A.M., Chaudhary, A.G., Alqahtani M.H., et al. (2016) Metformin Improves the Angiogenic Potential of Human CD34+ Cells Co-Incident with Downregulating CXCL10 and TIMP1 Gene Expression and Increasing VEGFA under Hyperglycemia and Hypoxia within a Therapeutic Window for Myocardial Infarction. Cardiovascular Diabetology, 15, 27. https://doi.org/10.1186/s12933-016-0344-2
[24]
Aulló, M.T.S., Villacampa, E.S. and Garcia-Gil, A. (2012) Impact of Donor Age on Liver Transplants. Trends in Transplantation, 6, 34-40.
[25]
Drzewiecki, K., Choi, J., Brancale, J., Leney-Greene, M.A., Sari, S., Dalgiç, B., Aksu, A.U., Sahin, G.E., Ozen, A., Baris, S., et al. (2021) GIMAP5 Maintains Liver Endothelial Cell Homeostasis and Prevents Portal Hypertension. Journal of Experimental Medicine, 218, e20201745. https://doi.org/10.1084/jem.20201745
[26]
Jain, A., Reyes, Kashyap, J., Dodson, R., Demetris, S.F., Ruppert, A.J., Abu-Elmagd, K., Marsh, K., Madariaga, W.J., Mazariegos, G., et al. (2000) Long-Term Survival after Liver Transplantation in 4,000 Consecutive Patients at a Single Center. Annals of Surgery, 232, 490-500. https://doi.org/10.1097/00000658-200010000-00004
[27]
Lué, A., Solanas, E., Baptista, P., Lorente, S., Araiz, J.J., Garcia-Gil, A. and Serrano, M.T. (2016) How Important Is Donor Age in Liver Transplantation? World Journal of Gastroenterology, 22, 4966-4976. https://doi.org/10.3748/wjg.v22.i21.4966
[28]
Goswami, T.K., Singh, M., Dhawan, M., Mitra, S., Bin Emran, T., Rabaan, A.A., Al Mutair, A., Al Alawi, Z., Alhumaid, S. and Dhama, K. (2022) Regulatory T Cells (Tregs) and Their Therapeutic Potential against Autoimmune Disorders—Advances and Challenges. Human Vaccines & Immunotherapeutics, 18, Article ID: 2035117. https://doi.org/10.1080/21645515.2022.2035117
[29]
Cvetkovski, F., Hexham, J.M. and Berglund, E. (2021) Strategies for Liver Transplantation Tolerance. International Journal of Molecular Sciences, 22, 2253. https://doi.org/10.3390/ijms22052253
[30]
Gregg, R.C., Smith, M., Clark, F.J., Dunnion, D., Khan, N., Chakraverty, R., Nayak, L. and Moss, P.A. (2005) The Number of Human Peripheral Blood CD4+CD25 High Regulatory T Cells Increases with Age. Clinical and Experimental Immunology, 140, 540-546. https://doi.org/10.1111/j.1365-2249.2005.02798.x
[31]
Gil, E., Kim, J.M., Jeon, K., Park, H., Kang, D., Cho, J., Suh, G.Y. and Park, J. (2018) Recipient Age and Mortality after Liver Transplantation: A Population-Based Cohort Study. Transplantation, 102, 2025-2032. https://doi.org/10.1097/TP.0000000000002246
[32]
Mikulic, D. and Mrzljak, A. (2020) Liver Transplantation and Aging. World Journal of Transplantation, 10, 256-266. https://doi.org/10.5500/wjt.v10.i9.256
[33]
Mousa, O.Y., Nguyen, J.H., Ma, Y., Rawal, B., Musto, K.R., Dougherty, M.K., Shalev, J.A. and Harnois, D.M. (2019) Evolving Role of Liver Transplantation in Elderly Recipients. Liver Transplantation, 25, 1363-1373. https://doi.org/10.1002/lt.25589