A library of new 1,4-benzodioxane-6-carboxylic acid amide analogs was designed and synthesized. These analogs were obtained in six steps from gallic acid. Firstly, esterification of the commercially available gallic acid in methanol in the presence of sulfuric acid afforded methyl 3,4,5-trihydroxybenzoate (9) in satisfactory yield. The ester 9 was then reacted with an excess of 1,2-dibromoethane in the presence of K2CO3 in acetone to furnish the 6,8-disubstituted-1,4-benzodioxane (10) in 45% yield. The reaction of 10 with various mercaptans gave the sulfide derivative 11, 12, and 13 in moderate yield. Subsequent hydrolysis of the methyl ester in 13 followed by conversion to the acid chloride and reaction of the acid chloride intermediate with different commercially available primary and secondary amines gave the amide analogs 18 - 32 with an average yield of 43%. Conversion of the sulfide group in Compound 23 to Sulfoxide 33 or Sulfone 34 was accomplished by reaction with either 30% H2O2/TeO2 or 30% H2O2, respectively. The structures of the synthesized compounds were characterized using FTIR, 1H-NMR, 13C-NMR, and high-resolution ESI-MS.
References
[1]
Song, X., Yang, Y., Zhao, J. and Chen, Y. (2014) Synthesis and Antibacterial Activity of Cinnamaldehyde Acylhydrazone with a 1,4-Benzodioxan Fragment as a Novel Class of Potent β-Ketoacyl–Acyl Carrier Protein Synthase III (FabH) Inhibitor. Chemical and Pharmaceutical Bulletin, 62, 1110-1118. https://doi.org/10.1248/cpb.c14-00485
[2]
Pilkington, L., Wagoner, J., Polyak, S. and Barker, D. (2015) Enantioselective Synthesis, Stereochemical Correction, and Biological Investigation of the Rodgersinine Family of 1,4-Benzodioxane Neolignans. Organic Letters, 17, 1046-1049. https://doi.org/10.1021/acs.orglett.5b00189
[3]
Vazquez, M.T., Rosell, G. and Pujol, M.D. (1996) Synthesis and Anti-Inflammatory Activity of 2,3-dihydro-1,4-benzodioxin Methyl Carboxylic Acids. Farmaco, 51, 215-217.
[4]
Vázquez, M.T., Rosell, G. and Pujol, M.D. (1997) Synthesis and Anti-Inflammatory Activity of rac-2-(2,3-dihydro-1,4-benzodioxin)propionic Acid and Its R and S Enantiomers. European Journal of Medicinal Chemistry, 32, 529-534. https://doi.org/10.1016/S0223-5234(97)84016-0
[5]
Xu, M.Z., Lee, W.S., Han, J.M., Oh, H.W., Park, D.S., Tian, G.R., Jeong, T.S. and Park, H.Y. (2006) Antioxidant and Anti-Inflammatory Activities of N-Acetyldopamine Dimers from Periostracum Cicadae. Bioorganic & Medicinal Chemistry, 14, 7826-7834. https://doi.org/10.1016/j.bmc.2006.07.063
[6]
Erceg, M., Vertzoni, M., Cerić, H., Dumić, M., Cetina-Čižmek, B. and Reppas, C. (2012) In Vitro vs. Canine Data for Assessing Early Exposure of Doxazosin Base and Its Mesylate Salt. European Journal of Pharmaceutics and Biopharmaceutics, 80, 402-409. https://doi.org/10.1016/j.ejpb.2011.10.004
[7]
Fang, Q.K., Grover, P., Han, Z., McConville, F.X., Rossi, R.F., Olsson, D.J., Kessler, D.W., Wald, S.A. and Senanayake, C.H. (2001) Practical Chemical and Enzymatic Technologies for (S)-1,4-benzodioxan-2-carboxypiperizine Intermediate in the Synthesis of (S)-Doxazosin Mesylate. Tetrahedron: Asymmetry, 12, 2169-2174. https://doi.org/10.1016/S0957-4166(01)00368-8
[8]
Hou, Y.-P., Sun, J., Pang, Z.-H., Lv, P.-C., Li, D.-D., Yan, L., Zhang, H.-J., Zheng, E.X., Zhao, J. and Zhu, H.-L. (2011) Synthesis and Antitumor Activity of 1,2,4-triazoles Having 1,4-benzodioxan Fragment as a Novel Class of Potent Methionine Aminopeptidase Type II Inhibitors. Bioorganic & Medicinal Chemistry, 19, 5948-5954. https://doi.org/10.1016/j.bmc.2011.08.063
[9]
Harrak, Y., Rosell, G., Daidone, G., Plescia, S., Schillaci, D. and Pujol, M.D. (2007) Synthesis and Biological Activity of New Anti-Inflammatory Compounds Containing the 1,4-benzodioxine and/or Pyrrole System. Bioorganic & Medicinal Chemistry, 15, 4876-4890. https://doi.org/10.1016/j.bmc.2007.04.050
[10]
Sun, J., Li, M.-H., Qian, S.-S., Guo, F.-J., Dang, X.-F., Wang, X.-M., Xue, Y.-R. and Zhu, H.-L. (2013) Synthesis and Antitumor Activity of 1,3,4-Oxadiazole Possessing 1,4-benzodioxan Moiety as a Novel Class of Potent Methionine Aminopeptidase Type II Inhibitors. Bioorganic & Medicinal Chemistry Letters, 23, 2876-2879. https://doi.org/10.1016/j.bmcl.2013.03.068
[11]
Pallavicini, M., Budriesi, R., Fumagalli, L., Ioan, P., Chiarini, A., Bolchi, C., Ugenti, M.P., Colleoni, S., Gobbi, M. and Valoti, E. (2006) WB4101-Related Compounds: New, Subtype-Selective Alpha1-Adrenoreceptor Antagonists (or Inverse Agonists?). Journal of Medicinal Chemistry, 49, 7140-719. https://doi.org/10.1021/jm060358r
[12]
Cheeseman, M.D., Chessum, N.E. A., Rye, C.S., Pasqua, A.E., Tucker, M.J., Wilding, B., Evans, L.E., Lepri, S., Richards, M., Sharp, S.Y., Ali, S., Rowlands, M., O’Fee, L., Miah, A., Hayes, A., Henley, A.T., Powers, M., Poele, R.T., Billy, E.D., Pellegrino, L., Raynaud, F., Burke, R., Van Montfort, R.L.M., Eccles, S.A., Workman, P. and Jones, K. (2017) Discovery of a Chemical Probe Bisamide (CCT251236): An Orally Bioavailable Efficacious Pirin Ligand from a Heat Shock Transcription Factor 1 (HSF1) Phenotypic Screen. Journal of Medicinal Chemistry, 60, 180-201. https://doi.org/10.1021/acs.jmedchem.6b01055
[13]
Astolfi, A., Kudolo, M., Brea, J., Manni, G., Manfroni, G., Palazzotti, D., Sabatini, S., Cecchetti, F., Felicetti, T., Cannalire, R., Massari, S., Tabarrini, O., Loza, M.I., Fallarino, F., Cecchetti, V., Laufer, S.A. and Barreca, M.L. (2019) Discovery of Potent p38a MAPK Inhibitors through a Funnel Like Workflow Combining in Silico Screening and in Vitro Validation. European Journal of Medicinal Chemistry, 182, Article ID: 111624. https://doi.org/10.1016/j.ejmech.2019.111624
[14]
Dodo, K., Minato, T., Noguchi-Yachide, T., Suganuma, M. and Hashimoto, Y. (2008) Antiproliferative and Apoptosis-Inducing Activities of Alkyl Gallate and Gallamide Derivatives Related to (-)-Epigallocatechin Gallate. Bioorganic & Medicinal Chemistry, 16, 7975-7982. https://doi.org/10.1016/j.bmc.2008.07.063
[15]
Gianni, E.D. and Fimognari, C. (2015) Chapter Seven: Anticancer Mechanism of Sulfur Containing Compounds. The Enzymes, 37, 167-192. https://doi.org/10.1016/bs.enz.2015.05.003
[16]
Wang, X. and Guo, Z. (2007) The Role of Sulfur in Platinum Anticancer Chemotherapy. Anti-Cancer Agents in Medicinal Chemistry, 7, 19-34. https://doi.org/10.2174/187152007779314062
[17]
Akhtar, W., Nainwal, L.M., Kaushik, S.K., Akhtar, M., Shaquiquzzaman, M., Almalki, F., Saifullah, K., Marella, A. and Alam, M.M. (2020) Methylene-Bearing Sulfur-Containing Cyanopyrimidine Derivatives for Treatment of Cancer: Part-II. Archiv der Pharmazie, 353, e1900333. https://doi.org/10.1002/ardp.201900333
[18]
Kim, K.S., Hwang, H.J., Cheong, C.S. and Hahn, C.S. (1990) Tellurium Dioxide Catalyzed Selective Oxidation of Sulfides to Sulfoxides with Hydrogen Peroxide. Tetrahedron Letters, 31, 2893-2894. https://doi.org/10.1016/0040-4039(90)80176-M