|
液质联用技术在水体中抗生素检测的应用
|
Abstract:
随着抗生素被广泛应用于医学、农业、水产养殖业等领域,其引发的机体耐药性、环境污染也引起了人们的关注。液质联用技术因检测速度快、灵敏度高、检出限低、应用范围广等优点,在抗生素检测领域得到广泛使用。论文对水体及我国水产养殖中抗生素的使用现状及问题进行了总结,列举了液质联用技术在水体中抗生素检测的实际应用,为后续进一步研究提供参考。
As antibiotics are widely used in medicine, agriculture, aquaculture and so on, the body resistance and environmental pollution caused by antibiotics have also attracted people’s attention. Liquid-mass spectrometry has been widely used in the field of antibiotic detection due to its high detection speed, high sensitivity, low detection limit and wide application range. In this paper, the use and problems of antibiotics in water and aquaculture in China were summarized, and the practical applications of liquid-mass spectrometry in determination of antibiotics in water were briefly reviewed, which would provide reference for further research.
[1] | 常东浩, 葛菁萍. 生态环境中抗生素检测与降解方法的研究进展[J]. 中国农学通报, 2021, 37(27): 59-64. |
[2] | Cháfer-pericás, C., Maquieira, á. and Puchades, R. (2010) Fast Screening Methods to Detect Antibiotic Residues in Food Samples. TrAC—Trends in Analytical Chemistry, 29, 1038-1049. https://doi.org/10.1016/j.trac.2010.06.004 |
[3] | 李福长, 刘梨平. 我国抗生素滥用现状及其对策[J]. 临床合理用药杂志, 2014, 7(26): 175-177. |
[4] | 许琳. 正确看待养殖业中抗生素的使用[J]. 养禽与禽病防治, 2017(7): 40-43. |
[5] | 陈红英, 王月颖, 傅思武. 抗生素在养殖业中的应用现状[J]. 现代畜牧科技, 2019, 53(5): 1-3. |
[6] | O’Neill, J. (2016) Tackling Drug-Resistant Infections Globally: Final Report and Recommendations. Government of the United Kingdom, London. |
[7] | 金亦豪, 刘子述, 胡宝兰. 环境中胞内胞外抗性基因的分离检测、分布与传播研究进展[J]. 微生物学报, 2022(4): 1247-1259. |
[8] | 雷雨洋, 李方方, 欧阳洁, 等. 浙江地区抗生素残留的环境分布特征及来源分析[J]. 化学进展, 2021, 33(8): 1414-1425. |
[9] | Cheng, D., Ngo, H.H., Guo, W., et al. (2020) A Critical Review on Antibiotics and Hormones in Swine Wastewater: Water Pollution Problems and Control Approaches. Journal of Hazardous Materials, 387, Article ID: 121682.
https://doi.org/10.1016/j.jhazmat.2019.121682 |
[10] | Binh, V.N., Dang, N., Anh, N.T.K., et al. (2018) Antibiotics in the Aquatic Environment of Vietnam: Sources, Concentrations, Risk and Control Strategy. Chemosphere, 197, 438-450.
https://doi.org/10.1016/j.chemosphere.2018.01.061 |
[11] | Tamtam, F., Mercier, F., Le Bot, B., et al. (2008) Occurrence and Fate of Antibiotics in the Seine River in Various Hydrological Conditions. Science of the Total Environment, 393, 84-95.
https://doi.org/10.1016/j.scitotenv.2007.12.009 |
[12] | 陈汝琬. 水环境中抗生素的抑菌性检测手段探讨[J]. 绿色环保建材, 2021(8): 172-174. |
[13] | 刘昔, 王智, 王学雷, 等. 我国典型区域地表水环境中抗生素污染现状及其生态风险评价[J]. 环境科学, 2019, 40(5): 2094-2100. |
[14] | Zou, S., Xu, W., Zhang, R., et al. (2011) Occurrence and Distribution of Antibiotics in Coastal Water of the Bohai Bay, China: Impacts of River Discharge and Aquaculture Activities. Environmental Pollution, 159, 2913-2920.
https://doi.org/10.1016/j.envpol.2011.04.037 |
[15] | Cao, L., Naylor, R.L., Henriksson, P., et al. (2015) China’s Aquaculture and the World’s Wild Fisheries. Science, 347, 133-135. https://doi.org/10.1126/science.1260149 |
[16] | 农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会, 等. 2019中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2019. |
[17] | 黄铢玉, 方龙香, 宋超, 等. 抗生素恩诺沙星在渔业中的研究进展[J]. 农学学报, 2019, 9(11): 57-62. |
[18] | 李贞金, 张洪昌, 沈根祥, 等. 水产养殖水、沉积物中抗生素检测方法优化及残留特征研究[J]. 生态毒理学报, 2020, 15(1): 209-219. |
[19] | Hernando, M.D., Mezcua, M., Fernandez-Alba, A.R., et al. (2006) Environmental Risk Assessment of Pharmaceutical Residues in Wastewater Effluents, Surface Waters and Sediments. Talanta, 69, 334-342.
https://doi.org/10.1016/j.talanta.2005.09.037 |
[20] | Sanderson, H., Brain, R.A., Johnson, D.J., et al. (2004) Toxicity Classification and Evaluation of Four Pharmaceuticals Classes: Antibiotics, Antineoplastics, Cardiovascular, and Sex Hormones. Toxicology, 203, 27-40.
https://doi.org/10.1016/j.tox.2004.05.015 |
[21] | 高晓月, 范维, 陈淑敏, 等. 微生物显色法检测禽畜肉中混合抗生素残留[J]. 肉类研究, 2019, 33(4): 36-41. |
[22] | 李小刚, 李曼玉, 马良坤. 食源性抗生素快速检测技术研究进展[J]. 分析试验室, 2019, 28(11): 1374-1380. |
[23] | Medina, M.B. (2004) Development of a Fluorescent Latex Immunoassay for Detection of a Spectinomycin Antibiotic. Journal of Agricultural and Food Chemistry, 52, 3231-3236. https://doi.org/10.1021/jf030542a |
[24] | 朱妍, 葛淑丽, 吴敏, 等. 毛细管电泳非接触式电导检测快速分离和测定氨基糖苷类抗生素[J]. 理化检验-化学分册, 2014, 50(5): 525-528. |
[25] | 赵海香, 刘海萍. 多壁碳纳米管固相萃取净化-高效液相色谱法测定猪肉和鸡肉中的磺胺多残留[J]. 色谱, 2014, 3(32): 294-298. |
[26] | 胡钰, 朱青青, 胡立刚, 等. 超高效液相色谱-串联质谱法同时测定土壤中30种抗生素[J]. 色谱, 2021, 39(8): 878-888. |
[27] | 梁敏, 章雪琴. 水产品中大环内酯类药物残留检测技术的研究进展[J]. 食品安全质量检测学报, 2021,12(2): 595-601. |
[28] | 傅生会, 许倩影, 刘忠芳, 等. 荧光光度法测定头孢菌素类抗生素含量的研究进展[J]. 理化检验-化学分册, 2014, 50(9): 1183-1186. |
[29] | 张颖, 陈璐, 赵巧灵, 等. QuEChERS EMR-Lipid结合LC/MS/MS测定水产品中15种喹诺酮类抗生素[J]. 食品工业, 2021, 42(3): 299-302. |
[30] | 魏丹, 国明, 吴慧珍, 等. 磁性固相萃取-高效液相色谱-串联质谱法测定环境水样中12种喹诺酮类抗生素残留[J]. 理化检验-化学分册, 2020, 56(3): 320-325. |
[31] | 黄允省. 大环内酯类抗生素的研究新进展[J]. 临床合理用药, 2018, 11(1): 164-165. |
[32] | Wang, J., Macneil, J.D., Kay, J.F., et al. 食品中抗菌药物残留的化学分析[M]. 于康震, 沈建忠, 译. 北京: 中国农业出版社, 2017: 21-25. |
[33] | 李雪红, 张煌涛, 占秀梅. 动物性食品中大环内酯类抗生素残留分析综述[J]. 草食家畜, 2006(3): 10-12. |
[34] | 吴明媛, 余焘, 谢宗升, 等. 液相色谱-四极杆/静电场轨道阱高分辨质谱法快速筛查海水中大环内酯类抗生素[J]. 理化检验-化学分册, 2021, 57(5): 444-449. |
[35] | 宋焕杰, 谢卫民, 王俊, 等. SPE-UPLC-MS/MS同时测定水环境中4大类15种抗生素[J]. 分析试验室, 2022, 41(1): 50-54. |
[36] | 顾艳, 胡文彦, 杨军. 多肽类抗生素的最大残留限量标准分析与检测方法研究进展[J]. 食品安全质量检测学报, 2021, 12(24): 9392-9398. |
[37] | Song, X., Huang, Q., Zhang, Y., et al. (2019) Rapid Multiresidue Analysis of Authorized/Banned Cyclopolypeptide Antibiotics in Feed by Liquid Chromatography-Tandem Mass Spectrometry Based on Dispersive Solid-Phase Extraction. Journal of Pharmaceutical & Biomedical Analysis, 170, 234-242. https://doi.org/10.1016/j.jpba.2019.03.050 |
[38] | 杜业刚, 阳洪波, 古丽君, 等. UPLC-MS/MS法同时测定动物源性食品中8种多肽类抗生素[J]. 食品工业科技, 2016, 37(8): 85-91. |
[39] | 钱卓真, 罗冬莲, 罗方方, 等. 高效液相色谱-串联质谱法测定养殖环境沉积物中多肽类抗生素残留量[J]. 分析化学, 2016, 44(6): 870-875. |
[40] | 郑璇, 张晓岭, 邹家素, 等. 超高效液相色谱-三重四极杆质谱法测定地表水和废水中的19种磺胺类抗生素[J]. 理化检验-化学分册, 2018, 54(6): 680-687. |
[41] | 洪蕾洁, 石璐, 张亚雷, 等.固相萃取-高效液相色谱法同时测定水体中的10种磺胺类抗生素[J]. 环境科学, 2012, 33(2): 652-657. |
[42] | 高振刚, 梁延鹏, 曾鸿鹄, 等. 固相萃取-超高效液相色谱-三重四极杆质谱法测定水中15种抗生素残留[J]. 分析试验室, 2021, 40(8): 875-880. |
[43] | 孙慧婧, 李佩纹, 张蓓蓓, 等. 大体积直接进样-超高效液相色谱-三重四极杆质谱法测定水中7大类42种抗生素残留[J]. 色谱, 2022, 40(4): 333-342. |
[44] | 姜明宏, 王金鹏, 赵阳国. 固相萃取-高效液相色谱-串联质谱法同时测定海水中12种抗生素[J]. 中国海洋大学学报, 2021, 51(10): 107-114. |
[45] | Cunha, C., Freitas, M.G., Rodrigues, D., et al. (2021) Low-Temperature Partitioning Extraction Followed by Liquid Chromatography Tandem Mass Spectrometry Determination of Multiclass Antibiotics in Solid and Soluble Wastewater Fractions. Journal of Chromatography A, 1650, Article ID: 462256. https://doi.org/10.1016/j.chroma.2021.462256 |
[46] | Licul-Kucera, V., Ladányi, M., Hizsnyik, G., et al. (2019) A Filtration Optimized Online SPE-HPLC-MS/MS Method for Determination of Three Macrolide Antibiotics Dissolved and Bound to Suspended Solids in Surface Water. Microchemical Journal, 148, 480-492. https://doi.org/10.1016/j.microc.2019.05.015 |
[47] | Gros, M., Rodríguez-Mozaz, S., Barcelóa, D. (2013) Rapid Analysis of Multiclass Antibiotic Residues and Some of Their Metabolites in Hospital, Urban Wastewater and River Water by Ultra-High-Performance Liquid Chromatography Coupled to Quadrupole-Linear Ion Trap Tandem Mass Spectrometry. Journal of Chromatography A, 1292, 173-188.
https://doi.org/10.1016/j.chroma.2012.12.072 |