|
Botanical Research 2022
基于多元统计分析的黑胫病烟草叶绿素含量高光谱估测
|
Abstract:
为快速有效地评估烟草病害等级,需要合理准确地估计烟草叶绿素含量。分别利用ASD Field Spec4地物光谱仪和HSY-051叶绿素仪测定黑胫病烟草旺长期叶片高光谱及其SPAD值,以叶片光谱原始反射率及其8种变换处理分别与叶绿素含量进行相关分析,然后利用多元统计分析方法(逐步回归和主成分回归)分别建立叶绿素含量估测模型。结果表明:1) 原始光谱的8种变形与叶绿素含量的相关性都高于原始光谱反射率;2) 各变换的一阶导数和二阶导数与叶绿素含量的相关性都明显高于其原始形式;3) 利用逐步回归方法建立的模型估测效果最好,其决定系数R2为0.8715。经验证,模型精度较好。本研究可为高光谱技术监测烟草叶片叶绿素含量提供一定的参考。
The content of chlorophyll is a very important assessment index in the growing situation of to-bacco. Thus, estimating the content of chlorophyll in tobacco accurately is effective for rating to-bacco disease. By use of the ASD Field Spec4 spectrometer to determine hyperspectral data of tobacco leaves infected by Phytophthora parasitica var. nicotianae in the vigorous growing period and HSY-051 chlorophyll meter to measure the SPAD value. Then, the correlation analysis of chlorophyll content with hyperspectral reflectance and its eight transforms was proceeded. On this basis, the chlorophyll content estimation models were established with the method of multivariate statistical analysis (stepwise regression and principal component regression). The results indicate that 1) the correlation between chlorophyll content and the eight transforms of original spectra was higher than that of the original spectral reflectance; 2) the correlation between chlorophyll content and the first derivative or second derivative of each transform was significantly higher than that of original form; 3) the best model was: Y = 22.415 + 39249.31X1 ? 13943.06X2 ? 24807.33X3 + 296102.44X4 ? 309086.89X5 + 130909.69X6 ? 7751.45X7, and this model with a correlation coefficient of 0.9335 and R2 of 0.8715 was based on stepwise regression. After verification, the precision of the model is good. Therefore, the research will provide a reference for the better application of hyperspectral technology in monitoring the chlorophyll content of tobacco leaves.
[1] | Daughtry, C.S.T., Walthall, C.L., Kim, M.S., Brown de Colstoun, E. and McMurtrey III, J.E. (2000) Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance. Remote Sensing of Environment, 74, 229-239.
https://doi.org/10.1016/S0034-4257(00)00113-9 |
[2] | Hansen, P.M. and Schjoerring, J.K. (2003) Reflectance Measurement of Canopy Biomass and Nitrogen Status in Wheat Crops Using Normalized Difference Vegetation Indices and Partial Least Squares Regression. Remote Sensing of Environment, 86, 542-553. https://doi.org/10.1016/S0034-4257(03)00131-7 |
[3] | 杨峰, 范亚民, 李建龙, 钱育蓉, 王艳, 张洁. 高光谱数据估测稻麦叶面积指数和叶绿素密度[J]. 农业工程学报, 2010, 26(2): 237-243. |
[4] | 杨杰, 田永超, 姚霞, 曹卫星, 张玉森, 朱艳. 水稻上部叶片叶绿素含量的高光谱估算模型[J]. 生态学报, 2009, 29(12): 6561-6571. |
[5] | 金林雪, 李映雪, 徐德福, 郭建茂, 张碧辉. 小麦叶片水分及绿度特征的光谱法诊断[J]. 中国农业气象, 2012, 33(1): 124-128. |
[6] | 李敏夏, 张林森, 李丙智, 张海燕, 郭雯. 苹果叶片高光谱特性与叶绿素含量和SPAD值的关系[J]. 西北林学院院报, 2010, 25(2): 35-39. |
[7] | 李方舟, 冯美臣, 杨武德, 李广信, 王超, 宋月荷, 等. 水旱地冬小麦叶绿素含量高光谱监测[J]. 生态学杂志, 2013, 32(12): 3213-3218. |
[8] | 李凤秀, 张柏, 刘殿伟, 王宗明, 宋开山, 靳华安, 等. 湿地小叶章叶绿素含量的高光谱遥感估算模型[J]. 生态学杂志, 2008, 27(7): 1077-1083. |
[9] | 彭彦昆, 黄慧, 王伟, 吴建虎, 王秀. 基于LS-SVM 和高光谱技术的玉米叶片叶绿素含量检测[J]. 江苏大学学报(自然科学版), 2011, 32(2): 125-128+174. |
[10] | 汤旭光, 宋开山, 刘殿伟, 王宗明, 张柏, 杜嘉, 等. 基于可见/近红外反射光谱的大豆叶绿素含量估算方法比较[J]. 光谱学与光谱分析, 2011, 31(2): 371-374. |
[11] | 姚付启, 张振华, 杨润亚, 孙金伟, 崔素芳. 基于红边参数的植被叶绿素含量高光谱估算模型[J]. 农业工程学报, 2009, 25(s2): 123-129. |
[12] | 房贤一, 朱西存, 王凌, 赵庚星. 基于高光谱的苹果盛果期冠层叶绿素含量监测研究[J]. 中国农业科学, 2013, 46(16): 3504-3513. |
[13] | 何挺, 王静, 程烨, 林宗坚. 土壤水分光谱特征研究[J].土壤学报, 2006, 43(6): 1027-1032. |
[14] | 朱西存, 姜远茂, 赵庚星, 王凌, 李希灿. 基于模糊识别的苹果花期冠层钾素含量高光谱估测[J]. 光谱学与光谱分析, 2013, 33(4): 1023-1027. |
[15] | Lucasg, B. (1975) Diseases of Tobacco. 3rd Edition, Harold E. Parker & Sons Printer, Fuquay-Varina, 32-57. |
[16] | 孔凡玉. 烟草赤星病的综合防治技术[J]. 烟草科技, 2002(6): 40-42. |
[17] | 陈瑞泰, 朱贤朝, 王智发, 郭振业, 董汉松, 王兰珍, 等. 全国16个主产烟省(区)烟草侵染性病害调研报告[J]. 中国烟草科学, 1997(4): 1-7. |
[18] | 蒋金豹, 陈云浩, 黄文江. 用高光谱微分指数估测条锈病胁迫下小麦冠层叶绿素密度[J]. 光谱学与光谱分析, 2010, 30(8): 2243-2247. |
[19] | 王克如, 潘文超, 李少昆, 陈兵, 肖华, 王方永, 等. 不同施氮量棉花冠层高光谱特征研究[J]. 光谱学与光谱分析, 2011, 31(7): 1868-1872. |
[20] | Maccioni, A., Agati, G. and Mazzinghi, P. (2001) New Vegetation Indices for Remote Measurement of Chlorophylls Based on Leaf Directional Reflectance Spectra. Journal of Photochemistry and Photobiology, 61, 52-61.
https://doi.org/10.1016/S1011-1344(01)00145-2 |
[21] | Sims, D.A. and Gamon, J.A. (2002) Relationships between Leaf Pigment Content and Spectral Reflectance across a Wide Range of Species, Leaf Structures and Developmental Stages. Remote Sensing of Environment, 81, 337-354.
https://doi.org/10.1016/S0034-4257(02)00010-X |
[22] | Yang, X.H., Huang, J.F., Wu, Y.P., Wang, J.W., Wang, P., Wang, X.M., et al. (2011) Estimating Biophysical Parameters of Rice with Remote Sensing Data Using Support Vector Machines. Science China Life Science, 54, 272-281.
https://doi.org/10.1007/s11427-011-4135-4 |
[23] | 张庆利. SPSS宝典[M]. 北京: 电子工业出版社, 2011. |
[24] | 余建英, 何旭宏. 数据统计分析与SPSS应用[M]. 北京: 人民邮电出版社, 2003. |
[25] | Huang, J.F. and Blackburn, G.A. (2011) Optimizing Predictive Models for Leaf Chlorophyll Concentration Based on Continuous Wavelet Analysis of Hyperspectral Data. International Journal of Remote Sensing, 32, 9375-9396.
https://doi.org/10.1080/01431161.2011.558130 |