|
土石方测量误差公式推导及其有效性验证
|
Abstract:
在实际工作中,地形图测绘和土石方计算方法均较为成熟,有大量的文献研究了采用各种方法测绘地形图的相关问题,也有大量的文献研究了土石方的计算问题,但是对于如何测绘地形图才能满足土石方测量精度的研究还很不充分。本文从方格网高程精度的视角,推导了方格网高程点数量、精度与土石方相对误差关系公式,并采用数学模拟的方法,初步验证了公式的有效性。
In practice, the methods of topographic mapping and earthwork calculation are relatively mature. There is a great deal of literature on surveying and mapping topographic maps by various methods. There is also a large number of literature on the calculation of earthwork. However, the research on how to map topographic maps to meet the accuracy of earthwork measurement is still insufficient. In this paper, from the perspective of grid elevation accuracy, the formulas of the relationship be-tween the number of grid elevation points, the accuracy error, and the relative error of earthwork measurement are derived, and the method of mathematical simulation was used to verify the effectiveness of the formula.
[1] | 刘亮. 几种工程土石方量计算方法的比较[J]. 山西建筑, 2019, 45(8): 182-183. |
[2] | 张蒙, 王想红, 徐胜华, 肖冰, 文化立. 等高线约束的Delaunay三角网在土石方量计算中的应用[J]. 地理与地理信息科学, 2020, 36(4): 14-18. |
[3] | 中华人民共和国建设部及国家质量监督检验检疫总局. GB50026-2007工程测量规范[S]. 北京: 中国计划出版社, 2008. |
[4] | 中华人民共和国水利部. SL197-2013水利水电工程测量规范[S]. 北京: 中国水利水电出版社, 2013. |
[5] | 中华人民共和国住房和城乡建设部. CJJ/T8-2011城市测量规范[S]. 北京: 中国建筑工业出版社, 2011. |
[6] | 中华人民共和国水利部. SL52-2015水利水电工程施工测量规范[S]. 北京: 中国水利水电出版社, 2015: 69. |