|
甜高粱对镉污染农田的植物修复效果
|
Abstract:
本文旨在研究甜高粱对重金属胁迫的生理响应及其结合生物质炭和菌根用于Cd污染农田土壤的修复效果。试验用土采自湖南长沙县北山镇的表层污染农田土壤,以探明3个水平的生物炭添加量以及接种与不接种摩西球囊霉菌处理对甜高粱产量、含糖量和重金属含量的影响。结果表明,接种菌根和添加生物炭均能够明显增加甜高粱的产量,在生物炭添加量为1%并接种菌根的情况下效果最好,增产幅度达到了50%;接种菌根促进了甜高粱根系对土壤中有效态镉的吸收,降低土壤中有效态镉的含量,且其降低效果随着生物炭添加量的增加而增加,添加生物炭和接种菌根能够提高甜高粱蔗糖含量,对还原糖含量没有影响。结合甜高粱产量、含糖量以及土壤修复效果,采用添加1%生物质炭并接种菌根的处理效果最为理想。
This paper was to investigate the physiological response of sweet sorghum to heavy metals stress and validate the effectiveness for phytoremediation of Cd-contaminated soils by this energy plant combined with biochar and mycorrhizae. The test soil was collected from Beishan Town, Changsha County, Hunan Province of China. The effects of three biochar additions and inoculation with Glomus mosseae on the yield, sugar content and heavy metal content of sweet sorghum were evaluated via a greenhouse study. The results showed that inoculation with mycorrhizal fungi and addition of biochar exerted a positive effect in terms of the yield, sugar content and heavy metal content of sweet sorghum. Both mycorrhizal and biochar additions significantly increased the yield of sweet sorghum, up to 50% increase rate, which was achieved in the treatment of 1% biochar addition associated with mycorrhizal inoculation. The addition of biochar and inoculation of mycorrhizae increased the sucrose content in the stem of sweet sorghum, but had no influence on the reducing sugar content. Taking into the yield, sugar content and soil remediation effect into account, the treatment of 1% biochar addition associated with mycorrhizal inoculationwas recommended due to its ideal performance.
[1] | Huang, Y., Wang, L., Wang, W., et al. (2018) Current Status of Agricultural Soil Pollution by Heavy Metals in China: A Meta-Analysis. Science of the Total Environment, 651, 3034-3042. https://doi.org/10.1016/j.scitotenv.2018.10.185 |
[2] | Ma, C., Ci, K., Zhu, J., et al. (2020) Impacts of Exogenous Mineral Silicon on Cadmium Migration and Transformation in the Soil-Rice System and on Soil Health. Science of the Total Environment, 759, Article ID: 143501.
https://doi.org/10.1016/j.scitotenv.2020.143501 |
[3] | 高鑫, 曾希柏, 陈清, 等. 利用富镉基质栽培快速比较不同叶菜镉累积能力的差异[J]. 应用生态学报, 2020, 31(8): 2740-2748. |
[4] | 刘昭兵, 纪雄辉, 官迪, 等. 湖南两种母质发育土壤的稻米镉积累差异[J]. 土壤通报, 2018, 49(1): 191-196. |
[5] | 黄卫, 庄荣浩, 刘辉, 等. 农田土壤镉污染现状与治理方法研究进展[J]. 湖南师范大学自然科学学报, 2022, 45(1): 49-56. |
[6] | 丁禺乔, 柳晓光. 土壤重金属污染修复技术及展望[J]. 资源节约与环保, 2021(6): 77-78. |
[7] | Dastyar, W., Raheem, A., He, J., et al. (2019) Biofuel Production Using Thermochemical Conversion of Heavy Metal-Contaminated Biomass (HMCB) Har-vested from Phytoextraction Process. Chemical Engineering Journal, 358, 759-785. https://doi.org/10.1016/j.cej.2018.08.111 |
[8] | 侯新村, 范希峰, 武菊英, 等. 草本能源植物修复重金属污染土壤的潜力[J]. 中国草地学报, 2012, 34(1): 59-64. |
[9] | 张杏锋, 吴萍, 冯健飞, 等. 超富集植物与能源植物间作对Cd, Pb, Zn累积的影响[J]. 农业环境科学学报, 2021, 40(7): 1481-1491. |
[10] | 祁剑英, 杜天庆, 薛建福, 等. 能源作物甜高粱和玉米对土壤重金属的富集比较[J]. 玉米科学, 2017, 25(6): 73-78. |
[11] | 张英英, 施志国, 李彦荣, 等. 施用改良剂对重度镉胁迫下甜高粱重金属吸收和转运的调控效应[J]. 西南农业学报, 2021, 34(9): 1959-1968. |
[12] | Jia, W., Lv, S., Feng, J., et al. (2016) Morphophysiological Characteristic Analysis Demonstrated the Potential of Sweet Sorghum (Sorghum bicolor (L.) Moench) in the Phytoremediation of Cadmium Contaminated Soils. Environmental Science and Pollution Research, 23, 18823-18831. https://doi.org/10.1007/s11356-016-7083-5 |
[13] | 邹英宁, 吴强盛, 李艳, 等. 丛枝菌根真菌对枳根系形态和蔗糖、葡萄糖含量的影响[J]. 应用生态学报, 2014, 25(4): 1125-1129. |
[14] | 黄咏明, 吴黎明, 宋放, 等. 根系修剪和接种丛枝菌根真菌对枳实生苗根系形态的影响[J]. 中国南方果树, 2019, 48(2): 5-10. |
[15] | Wu, Q. S., He, X. H., Zou, Y. N., et al. (2012) Arbuscular Mycorrhizas Alter Root System Architecture of Citrus Tangerine through Regulating Metabolism of Endogenous Polyamines. Plant Growth Regulation, 68, 27-35.
https://doi.org/10.1007/s10725-012-9690-6 |
[16] | 韩冰, 郭世荣, 贺超兴, 等. 丛枝菌根真菌对盐胁迫下黄瓜植株生长、果实产量和品质的影响[J]. 应用生态学报, 2012, 23(1): 154-158. |
[17] | 黄京华, 刘青, 李晓辉, 等. 丛枝菌根真菌诱导玉米根系形态变化及其机理[J]. 玉米科学, 2013, 21(3): 131-135, 139. |
[18] | 李江鹏, 于阳雪, 孙璐. 生物炭对甜高粱形态特性的影响[J]. 安徽农业科学, 2015, 43(10): 53-54, 90. |
[19] | 王月玲, 耿增超, 王强, 等. 生物炭对塿土土壤温室气体及土壤理化性质的影响[J]. 环境科学, 2016, 37(9): 3634-3641. |
[20] | 聂新星, 张自咏, 黄玉红, 等. 生物炭与氮肥配施对高粱生长及镉吸收的影响[J]. 农业环境科学学报, 2019, 38(12): 2749-2756. |
[21] | 再吐尼古丽?库尔班, 吐尔逊?吐尔洪, 阿扎提?阿布都古力, 等. 砷污染农田甜高粱对砷的累积特性[J]. 西北农业学报, 2013, 22(3): 182-187. |
[22] | 牟玉梅, 邢丹, 周鹏, 等. 接种丛枝菌根真菌对辣椒积累转运镉的影响[J]. 南方农业学报, 2021, 52(1): 172-179. |
[23] | 黄雁飞, 陈桂芬, 熊柳梅, 等. 不同作物秸秆生物炭对水稻镉吸收的影响[J]. 西南农业学报, 2020, 33(10): 2364-2369. |
[24] | 颜世红, 吴春发, 胡友彪, 等. 典型土壤中有效态镉CaCl2提取条件优化研究[J]. 中国农学通报, 2013, 29(9): 99-104. |
[25] | 王玉婷, 王紫玥, 刘田田, 等. 钝化剂对镉污染土壤修复效果及青菜生理效应影响[J]. 环境化学, 2020, 39(9): 2395-2403. |
[26] | 纪艺凝, 徐应明, 王农, 等. 鱼骨粉对土壤Cd污染钝化修复效应及其理化性质的影响[J]. 水土保持学报, 2019, 33(3): 312-319. |
[27] | 郭雄飞. 生物炭、间作和菌根对重金属污染土壤特性及刨花润楠生长的影响[D]: [博士学位论文]. 广州: 华南农业大学, 2017. |
[28] | 张云霞, 宋波, 宾娟, 等. 超富集植物藿香蓟(Ageratum conyzoides L.)对镉污染农田的修复潜力[J]. 环境科学, 2019(5): 2453-2459. |
[29] | 薛忠财, 李纪红, 李十中, 等. 能源作物甜高粱对镉污染农田的修复潜力研究[J]. 环境科学学报, 2018, 38(4): 1621-1627. |