全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

宽频电磁屏蔽涂层材料仿真设计研究
Simulation and Design of Wide Frequency Electromagnetic Shielding Coating

DOI: 10.12677/MS.2022.129095, PP. 853-863

Keywords: 宽频,电磁屏蔽,涂料,仿真设计
Wide Frequency Range
, Electromagnetic Shielding, Coating, Simulation Design

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对DC~18 GHz宽频电、磁屏蔽涂料,应用CST仿真软件中电磁工作室、微波工作室模块进行屏蔽性能的仿真设计,分别构建DC~10 kHz、100 kHz~50 MHz、1~18 GHz电、磁场屏蔽分析模型,分析材料相对导磁率、导电率及厚度等参数对其屏蔽性能的影响规律。结果显示,材料的屏蔽性能在DC~10 kHz磁场环境下,与材料的导电率无影响关系,由材料的相对导磁率、厚度决定,且呈现准正比的上升趋势;在100 kHz~50 MHz电磁场环境下,由材料的导电率、相对导磁率和厚度决定,且随导电率、相对导磁率、厚度的增加成上升趋势;在1~18 GHz电磁环境下,与材料的相对导磁率、厚度基本无影响关系,由材料的导电率决定,且随着电导率增加呈上升趋势。
For DC-18GHz broadband electrical and magnetic shielding coatings, the electromagnetic studio and microwave studio modules in CST simulation software are used to simulate the shielding performance. The electrical and magnetic shielding analysis models of DC~10 kHz, 100 kHz~50 MHz, 1~18 GHz are respectively constructed to analyze the influence laws of materials such as magnetic permeability, electrical conductivity and thickness on the shielding performance. The results show that the shielding performance of the material has no influence on the conductivity of the material in the magnetic field of DC~10 kHz, but is determined by the permeability and thickness of the material, and presents a quasi-proportional upward trend; The shielding performance of the material is determined by the conductivity, permeability and thickness of the material in the electromagnetic field of 100 kHz to 50 MHz, and it tends to rise with the increase of the conductivity, permeability and thickness; In the electromagnetic field from 1 GHz to 18 GHz, the shielding performance of the material is basically not influenced by the magnetic permeability and thickness of the material. It is determined by the conductivity, and tends to increase as the conductivity increases.

References

[1]  管登高, 孙传敏, 孙遥, 等. 加强电磁环境保护, 提高城市电磁兼容水平[J]. 电讯技术, 2011, 51(4): 120-125.
[2]  Li, Y., Chen, C.X., Zhang, S., et al. (2008) Electrical Conductivity and Electromagentic Interference Shielding Characteristics of Multiwalled Carbon Nanotube Filled Polacrylate Composite Films. Applied Surface Science, 254, 5766-5771.
https://doi.org/10.1016/j.apsusc.2008.03.077
[3]  路宏敏. 工程与电磁兼容[M]. 西安: 西安电子科技大学出版社, 2003: 100-105.
[4]  张宁, 邵忠财, 李晓伟. 电磁屏蔽填料的制备及研究进展[J]. 电镀与精饰, 2012, 34(3): 28-31.
[5]  王建忠, 朱纪磊, 支浩, 等. 电磁辐射及其防护材料[J]. 材料导报, 2013, 27(4): 51-62.
[6]  张敏. CST微波工作室用户全书[M]. 成都: 电子科技大学出版社, 2007.
[7]  胡雪峰. 含超导的多层屏蔽体磁屏蔽的仿真研究[D]: [硕士学位论文]. 长沙: 湖南大学, 2015.
[8]  王录才, 张淑凯, 王艳丽. 基于CST泡沫铝通风窗屏蔽性能的有限元模拟[J]. 新技术新工艺, 2015(3): 10-14.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133