|
可降解稀土镁合金在骨科中的研究进展
|
Abstract:
在骨科中,与不可降解金属相比,镁合金作为可生物降解金属,可以在体内降解,达到在无需手术干预的情况下完全移除植入物,这减轻了患者的痛苦和经济负担。然而目前其腐蚀速率和机械性能方面存在缺陷,这可以通过合金化途径来得以改善。稀土元素作为合金化元素之一,由于其独特的化学和物理性质受到了越来越多的关注。因此,本文将以可降解稀土镁合金在骨科中的研究进展进行论述。
Compared with non-degradable metals, magnesium alloys, as biodegradable metals, can be de-graded in vivo to achieve complete removal of implants without surgical intervention in orthopedics, which reduces the pain and financial burden of patients. However, there are defects in corrosion rate and mechanical properties, which can be improved by alloying. As one of alloying elements, rare earth elements have attracted more and more attention due to their unique chemical and physical properties. Therefore, this paper will discuss the research progress of degradable rare earth magnesium alloy in orthopedics.
[1] | Chen, B., Liang, Y., Bai, L., et al. (2020) Sustained Release of Magnesium Ions Mediated by Injectable Self-Healing Adhesive Hydrogel Promotes Fibrocartilaginous Interface Regeneration in the Rabbit Rotator Cuff Tear Model. Chemical Engineering Journal, 396, Article ID: 125335. https://doi.org/10.1016/j.cej.2020.125335 |
[2] | Mehrjou, B., Dehghan-Baniani, D., Shi, M., et al. (2020) Nanopatterned Silk-Coated AZ31 Magnesium Alloy with Enhanced Anti-bacterial and Corrosion Properties. Materials Science and Engineering: C, 116, Article ID: 111173.
https://doi.org/10.1016/j.msec.2020.111173 |
[3] | 周盟, 黄艺聪, 康斌. 骨科可降解镁合金生物材料的研究进展[J]. 中华骨与关节外科杂志, 2020, 13(5): 433-440. |
[4] | Bian, D., Deng, J., Li, N., et al. (2018) In Vitro and in Vivo Studies on Biomedical Magnesium Low-Alloying with Elements Gadolinium and Zinc for Orthopedic Implant Applica-tions. ACS Applied Materials & Interfaces, 10, 4394-4408. https://doi.org/10.1021/acsami.7b15498 |
[5] | Wu, D.T., Munguia-Lopez, J.G., Cho, Y.W., et al. (2021) Polymeric Scaffolds for Dental, Oral, and Craniofacial Regenerative Medicine. Molecules, 26, Article No. 7043. https://doi.org/10.3390/molecules26227043 |
[6] | Wu, X., Wang, Z., Li, H., et al. (2019) Biomechanical Evaluation of Osteoporotic Fracture: Metal Fixation versus Absorbable Fixation in Saw-bones Models. Injury, 50, 1272-1276. https://doi.org/10.1016/j.injury.2019.05.023 |
[7] | Amini, A.R., Wallace, J.S. and Nukavarapu, S.P. (2011) Short-Term and Long-Term Effects of Orthopedic Biodegradable Implants. Journal of Long-Term Effects of Medical Implants, 21, 93-122.
https://doi.org/10.1615/JLongTermEffMedImplants.v21.i2.10 |
[8] | Vormann, J. (2003) Magnesium: Nutrition and Metabolism. Molecular Aspects of Medicine, 24, 27-37.
https://doi.org/10.1016/S0098-2997(02)00089-4 |
[9] | Musso, C.G. (2009) Magnesium Metabolism in Health and Disease. International Urology and Nephrology, 41, 357-362. https://doi.org/10.1007/s11255-009-9548-7 |
[10] | 姜可新, 李江. 可降解生物医用镁基材料在骨植入方面的研究进展[J]. 国际老年医学杂志, 2022, 43(2): 241-244. |
[11] | Li, Y., Liu, L., Wan, P., et al. (2016) Biodegradable Mg-Cu Alloy Implants with Antibacterial Activity for the Treatment of Osteomyelitis: In Vitro and in Vivo Evaluations. Biomaterials, 106, 250-263.
https://doi.org/10.1016/j.biomaterials.2016.08.031 |
[12] | Luo, Y., Zhang, C., Wang, J., et al. (2021) Clinical Transla-tion and Challenges of Biodegradable Magnesium-Based Interference Screws in ACL Reconstruction. Bioactive Materi-als, 6, 3231-3243.
https://doi.org/10.1016/j.bioactmat.2021.02.032 |
[13] | Li, X., Liu, X., Wu, S., et al. (2016) Design of Magnesium Alloys with Controllable Degradation for Biomedical Implants: From Bulk to Surface. Acta Biomaterialia, 45, 2-30. https://doi.org/10.1016/j.actbio.2016.09.005 |
[14] | Ji, X.J., Gao, L., Liu, J.C., et al. (2019) Corrosion Resistance and Antibacterial Properties of Hydroxyapatite Coating Induced by Gentamicin-Loaded Polymeric Multilayers on Magnesium Alloys. Colloids and Surfaces B: Biointerfaces, 179, 429-436. https://doi.org/10.1016/j.colsurfb.2019.04.029 |
[15] | Ding, Y., Wen, C., Hodgson, P., et al. (2014) Effects of Al-loying Elements on the Corrosion Behavior and Biocompatibility of Biodegradable Magnesium Alloys: A Review. Jour-nal of Materials Chemistry B, 2, 1912-1933.
https://doi.org/10.1039/C3TB21746A |
[16] | 张雁儒, 杨越, 徐景超, 李昊, 李洁洁, 余进伟. 新型稀土镁合金螺钉体内促骨修复及体外生物相容性研究[J]. 宁波大学学报(理工版). 2022, 35(1): 11-17. |
[17] | Liu, J., Bian, D., Zheng, Y., et al. (2020) Comparative in Vitro Study on Binary Mg-RE (Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) Alloy Systems. Acta Biomaterialia, 102, 508-528.
https://doi.org/10.1016/j.actbio.2019.11.013 |
[18] | Zhao, X., Shi, L.L. and Xu, J. (2013) Biodegradable Mg-Zn-Y Alloys with Long-Period Stacking Ordered Structure: Optimization for Mechanical Properties. Journal of the Mechanical Behavior of Biomedical Materials, 18, 181-190.
https://doi.org/10.1016/j.jmbbm.2012.11.016 |
[19] | Liu, L., Yuan, F., Zhao, M., et al. (2017) Rare Earth Element Yttrium Modified Mg-Al-Zn Alloy: Microstructure, Degradation Properties and Hardness. Materials, 10, Article No. 477. https://doi.org/10.3390/ma10050477 |
[20] | Chen, J., Tan, L., Etim, I.P., et al. (2018) Comparative Study of the Effect of Nd and Y Content on the Mechanical and Biodegradable Properties of Mg-Zn-Zr-xNd/Y (x=0.5, 1, 2) Alloys. Materials Technology, 33, 659-671.
https://doi.org/10.1080/10667857.2018.1492227 |
[21] | Kania, A., Nowosielski, R., Gawlas-Mucha, A., et al. (2019) Mechanical and Corrosion Properties of Mg-Based Alloys with Gd Addition. Materials, 12, Article No. 1775. https://doi.org/10.3390/ma12111775 |
[22] | Ding, Y., Lin, J., Wen, C., et al. (2016) Mechanical Properties, in Vitro Corrosion and Biocompatibility of Newly Developed Biodegradable Mg-Zr-Sr-Ho Alloys for Biomedical Applications. Scientific Reports, 6, Article No. 31990.
https://doi.org/10.1038/srep31990 |
[23] | Ozarslan, S., Sevik, H. and Sorar, I. (2019) Microstructure, Mechanical and Corrosion Properties of Novel Mg-Sn-Ce Alloys Produced by High Pressure Die Casting. Materials Science and Engi-neering: C, 105, Article No. 110064.
https://doi.org/10.1016/j.msec.2019.110064 |
[24] | Li, T., Wang, X.-T., Tang, S.-Q., et al. (2021) Improved Wear Resistance of Biodegradable Mg?1.5Zn?0.6Zr Alloy by Sc Addition. Rare Metals, 40, 2206-2212. https://doi.org/10.1007/s12598-020-01420-6 |
[25] | Munir, K., Lin, J., Wen, C., et al. (2020) Mechanical, Corrosion, and Biocompatibility Properties of Mg-Zr-Sr-Sc Alloys for Biodegradable Implant Applications. Acta Biomaterialia, 102, 493-507.
https://doi.org/10.1016/j.actbio.2019.12.001 |
[26] | Brar, H.S., Ball, J.P., Berglund, I.S., et al. (2013) A Study of a Biodegradable Mg-3Sc-3Y Alloy and the Effect of Self-Passivation on the in Vitro Degradation. Acta Biomaterialia, 9, 5331-5340.
https://doi.org/10.1016/j.actbio.2012.08.004 |
[27] | Ding, Y., Lin, J., Wen, C., et al. (2018) Mechanical Properties, Corrosion, and Biocompatibility of Mg-Zr-Sr-Dy Alloys for Biodegradable Implant Applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 106, 2425-2434. https://doi.org/10.1002/jbm.b.34051 |
[28] | Plaass, C., Von Falck, C., Ettinger, S., et al. (2018) Bioabsorbable Mag-nesium versus Standard Titanium Compression Screws for Fixation of Distal Metatarsal Osteotomies—3 Year Results of a Randomized Clinical Trial. Journal of Orthopaedic Science, 23, 321-327. https://doi.org/10.1016/j.jos.2017.11.005 |
[29] | Klauser, H. (2019) Internal Fixation of Three-Dimensional Distal Metatarsal I Osteotomies in the Treatment of Hallux Valgus Deformities Using Biodegradable Magnesium Screws in Comparison to Titanium Screws. Foot and Ankle Surgery, 25, 398-405. https://doi.org/10.1016/j.fas.2018.02.005 |
[30] | Kose, O., Turan, A., Unal, M., et al. (2018) Fixation of Medial Mal-leolar Fractures with Magnesium Bioabsorbable Headless Compression Screws: Short-Term Clinical and Radiological Outcomes in Eleven Patients. Archives of Orthopaedic and Trauma Surgery, 138, 1069-1075. https://doi.org/10.1007/s00402-018-2941-x |
[31] | Turan, A., Kati, Y.A., Acar, B., et al. (2020) Magnesium Bioab-sorbable Screw Fixation of Radial Styloid Fractures: Case Report. Journal of Wrist Surgery, 9, 150-155. https://doi.org/10.1055/s-0039-1685489 |
[32] | Weng, W., Biesiekierski, A., Li, Y., et al. (2021) A Review of the Physiological Impact of Rare Earth Elements and Their Uses in Biomedical Mg Alloys. Acta Biomaterialia, 130, 80-97. https://doi.org/10.1016/j.actbio.2021.06.004 |