全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

船舶基座声学设计方法研究
Research on the Design Method of Ship Bases with Acoustic Characteristics

DOI: 10.12677/APP.2022.129060, PP. 512-521

Keywords: 声学有限元法,机械噪声,基座声学设计,减振降噪
Acoustic Finite Element Method
, Mechanical Noise, Base Acoustic Design, Vibration and Noise Reduction

Full-Text   Cite this paper   Add to My Lib

Abstract:

基座作为连接船体结构和机械设备的中间结构,是设备载荷的重要传递途径,基座的声学特性对船舶机械噪声的控制具有重要的意义。本文基于声学有限元的方法,以某舱段模型为例,从声学设计角度出发分析基座结构形式、布置以及结构参数等对船舶机械噪声的影响规律,探索基座声学设计方法。结果表明,低频段改变基座的参数对基座机械阻抗和机械噪声的影响较小;在中高频段基座的振动参与程度越来越高,改变基座的结构参数对基座的阻抗特性和机械噪声影响越来越大。甲板基座主要控制低频噪声,而双层底基座主要控制中频段噪声。本文的结论,对基座的声学设计和结构的减振降噪设计具有重要的指导作用。
As a connecting structure between the hull and mechanical equipment, the base is an important transfer paths for equipment loads, and the acoustic characteristics of the base are of great significance to the control of ship mechanical noise. Based on the acoustic finite element method, taking a cabin model as an example, the paper analyzes the influence of the structural form, layout, and structural parameters of the base on the mechanical noise of the ship from the perspective of acoustic design, and explores the acoustic design method of the base. The results show that the changing parameters of the base in low frequencies have less influence on the mechanical impedance and mechanical noise. In the middle and high frequency domain, changing the structural parameters of the base has an increasing impact on the impedance characteristics and mechanical noise. The deck base mainly controls low frequency noise, while the double bottom base mainly controls middle frequency noise. The conclusion of this paper has an important guiding role in the acoustic design of the base and the vibration and noise reduction design of the structure.

References

[1]  李清, 杨德庆, 郁扬. 舰船低频水下辐射噪声数值计算方法对比研究[J]. 中国造船, 2017, 58(3): 114-127.
[2]  Azimi-Sadjadi, M.R., Yao, D., Huang, Q., et al. (2000) Underwater Target Classification Using Wavelet Packets and Neural Networks. IEEE Transactions on Neural Networks and Learning Systems, 11, 784-794.
https://doi.org/10.1109/72.846748
[3]  王本刚, 董大群, 谢松云. 基于功率谱估计的舰船噪声特征提取及声场通过特性仿真[J]. 系统仿真学报, 2002(1): 25-26, 33.
[4]  Hildebrand, J.A. (2009) Anthropogenic and Natural Sources of Ambient Noise in the Ocean. Marine Ecology Progress Series, 395, 5-20.
https://doi.org/10.3354/meps08353
[5]  Samara, M., Havera, J.G., Megan, F., et al. (2018) Monitoring Long-Term Soundscape Trends in U.S. Waters NOAA/NPS Ocean Noise Reference Station Network. Marine Policy, 90, 6-13.
https://doi.org/10.1016/j.marpol.2018.01.023
[6]  Merchant, N.D., Brookes, K.L., Faulkner, R.C., et al. (2016) Underwater Noise Levels in UK Waters. Scientific Reports, 6, 36942.
https://doi.org/10.1038/srep36942
[7]  邢景棠. 线性与非线性流固耦合动力学数值方法的进展及应用[J]. 力学进展, 2016, 46(1): 95-139.
[8]  Tripa, M.S., Botean, A., Ghioltean, L., et al. (2016) Study of Deformations for Thermoplastic Polyurethane Membrane by Finite Ele-ments Method (FEM). Applied Mechanics and Materials, 841, 72-76.
https://doi.org/10.4028/www.scientific.net/AMM.841.72
[9]  姚玉荣, 朱石坚. 利用频率响应函数求设备对基座的激励[J]. 船海工程, 2003(3): 5-8.
[10]  吴文伟, 沈荣瀛. 设备基座输入机械阻抗工程估算方法[J]. 振动工程学报, 2004(z2): 694-697.
[11]  原春晖, 朱显明, 张国良, 张维衡. 船舶机械振动源激励力的间接估计工程方法(英文) [J]. 船舶力学, 2007(6): 961-973.
[12]  王国治, 胡玉超, 仇远旺. 基座参数对舰船结构振动与声辐射的影响[J]. 江苏科技大学学报(自然科学版), 2012, 26(3): 222-225.
[13]  姚熊亮, 计方, 钱德进, 等. 典型船舶结构中振动波传递特性研究[J]. 振动与冲击, 2009, 28(8): 20-24.
[14]  李清, 杨德庆, 郁扬. 舰船低频水下辐射噪声的声固耦合数值计算方法[J]. 振动与冲击, 2018, 37(3): 174-179.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133