|
修正的CH方程的非零渐近值的光滑孤立波的直接求法
|
Abstract:
本文关注mCH方程的非零渐近值的光滑孤立波,并通过平面动力系统的分析方法,直接给出了孤立波解的显示表达式。
This paper focuses on the non-zero asymptotic value of the smooth solitary wave of the mCH equation and directly gives the explicit expression of the solitary wave solution through the analysis of the planar dynamical system.
[1] | Fuchssteiner, B. and Fokas, A.S. (1981) Symplectic Structures, Their Backlund Transformations and Hereditary Sym-metries. Physica D: Nonlinear Phenomena, 4, 47-66. https://doi.org/10.1016/0167-2789(81)90004-X |
[2] | Camassa, R. and Holm, D.D. (1993) An Integrable Shallow Water Equation with Peaked Solitons. Physical Review Letters, 71, 1661-1664. https://doi.org/10.1103/PhysRevLett.71.1661 |
[3] | Camassa, R., Holm, D.D. and Hyman, J. (1994) A New Inte-grable Shallow Water Equation. Advances in Applied Mechanics, 31, 1-33. https://doi.org/10.1016/S0065-2156(08)70254-0 |
[4] | Constantin, A. and Strauss, W. (2000) Stability of Peakons. Communications on Pure and Applied Mathematics, 53, 603-610. https://doi.org/10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L |
[5] | Liu, Z.R., Wang, R.Q. and Jing, Z.J. (2004) Peaked Wave Solutions of Camassa-Holm Equation. Chaos, Solitons & Fractals, 19, 77-92. https://doi.org/10.1016/S0960-0779(03)00082-1 |
[6] | Ouyang, Z.Y., Shan, Z. and Liu, Z.R. (2008) Orbital Stability of Peakons with Nonvanishing Boundary for CH and CH-Gamma Equations. Physics Letters A, 372, 7046-7050. https://doi.org/10.1016/j.physleta.2008.07.091 |
[7] | Constantin, A. and Strauss, W. (2002) Stability of Camassa-Holm Solitons. Journal of Nonlinear Science, 12, 415-422.
https://doi.org/10.1007/s00332-002-0517-x |
[8] | Constantin, A. and Molinet, L. (2001) Orbital Stability of Solitary Waves for a Shallow Water Equation. Physica D: Nonlinear Phenomena, 157, 75-89. https://doi.org/10.1016/S0167-2789(01)00298-6 |
[9] | Lenells, J. (2004) Stability of Periodic Peakons. International Mathematics Research Notices, 10, 485-499.
https://doi.org/10.1155/S1073792804132431 |
[10] | Yin, J.L., Tian, L.X. and Fan, X.H. (2010) Orbital Stability of Floating Periodic Peakons for the Camassa-Holm. Nonlinear Analysis Real World Applications, 11, 4021-4026. https://doi.org/10.1016/j.nonrwa.2010.03.008 |
[11] | Yin, Z.Y. (2007) On the Cauchy Problem for the Generalized Camassa-Holm Equation. Nonlinear Analysis, 66, 460-471.
https://doi.org/10.1016/j.na.2005.11.040 |
[12] | Kalisch, H. (2004) Stability of Solitary Waves for a Nonlinearly Dis-persive Equation. Discrete and Continuous Dynamical Systems, 10, 709-717. https://doi.org/10.3934/dcds.2004.10.709 |
[13] | Li, Y.A. and Olver, P.J. (2000) Well-Posedness and Blow-Up So-lutions for an Integrable Nonlinearly Dispersive Model Wave Equation. Journal of Differential Equations, 162, 27-63. https://doi.org/10.1006/jdeq.1999.3683 |
[14] | Liu, Z.R. and Qian, T.F. (2001) Peakons and Their Bifurcation in a Generalized Camassa-Holm Equation. International Journal of Bifurcation and Chaos, 11, 781-792. https://doi.org/10.1142/S0218127401002420 |
[15] | Tian, L.X. and Song, X.Y. (2004) New Peaked Solitary Wave Solutions of the Generalized Camassa-Holm Equation. Chaos, Solitons & Fractals, 21, 621-637. https://doi.org/10.1016/S0960-0779(03)00192-9 |
[16] | He, B., Rui, W.G. and Chen. C. (2008) Exact Travelling Wave Solutions for a Generalized Camassa-Holm Equation Using the Integral Bifurcation Method. Applied Mathematics and Computation, 206, 141-149.
https://doi.org/10.1016/j.amc.2008.08.043 |
[17] | Khuri, S.A. (2005) New Ansatz for Obtaining Wave Solutions of the Generalized Camassa-Holm Equation. Chaos, Solitons & Fractals, 25, 705-710. https://doi.org/10.1016/j.chaos.2004.11.083 |
[18] | Shen, J.W. and Xu, W. (2005) Bifurcation of Smooth and Non-Smooth Travelling Wave Solutions in the Generalized Camassa-Holm Equation. Chaos, Solitons & Fractals, 26, 1149-1162. https://doi.org/10.1016/j.chaos.2005.02.021 |
[19] | Wazwaz, A.W. (2006) Solitary Wave Solutions for Modified Forms of Degasperis-Procesi and Camassa-Holm Equations. Physics Letters A, 352, 500-504. https://doi.org/10.1016/j.physleta.2005.12.036 |