|
贫数据条件下民用航空发动机制造成本估算建模
|
Abstract:
民用航空发动机的设计方案一旦冻结,其制造成本就已基本确定。若要提高发动机的经济性,就要在设计阶段就估算出发动机的制造成本并改进设计方案。然而,我国的民用航空发动机行业尚处于起步阶段,在成本估算工作中可参考的历史成本数据很少。为了克服国内民用航空发动机行业积累的制造成本数据量少对成本估算工作精度的制约问题,本文提出了一种虚拟数据生成方法,用于在贫数据条件下对航空发动机制造成本数据集进行扩充。然后,将提出的虚拟数据生成方法与BP神经网络结合运用,建立了一个制造成本估算模型,并且采用贝叶斯优化算法对模型的超参数进行了优化。算例分析结果表明,提出的虚拟数据生成方法可以显著提高制造成本估算模型的精度,建立的成本估算模型的性能也显著优于常见的参数法估算模型。研究成果可为民用航空发动机设计方案优化中的制造成本控制工作提供方法支撑,还能够为航空发动机的产品定价和市场营销等决策提供依据。
Once the design scheme of a civil aviation engine is frozen, its manufacturing cost has been basically determined. To improve the economy of the engine, it is necessary to estimate the manufacturing cost of the engine and improve the design at the design stage. However, the civil aviation engine industry of China is still in its infancy, and there are few historical cost data that can be referenced in cost estimation. To overcome the restriction on the accuracy of cost estimation caused by the small amount of manufacturing cost data accumulated in domestic civil aeroengine industry, a virtual data generation method is proposed to expand the aeroengine manufacturing cost data set under the condition of few data. Then, a manufacturing cost estimation model is established by combining the proposed virtual data generation method with BP neural network, and the hyper parameters of the model are optimized by Bayesian optimization algorithm. The results of example analysis show that the proposed virtual data generation method can significantly improve the accuracy of manufacturing cost estimation model, and the performance of the established cost estimation model is also significantly better than the common parameter estimation model. The research results can not only provide method support for manufacturing cost control in civil aeroengine design scheme optimization, but also provide the basis for aeroengine product pricing and marketing decision-making.
[1] | 刘若泠. 弹用发动机研制、生产成本分析及估算方法研究[D]: [硕士学位论文]. 南京: 南京航空航天大学, 2013. |
[2] | 刘芳, 张海涛. 小样本理论在航空发动机研制费估算中的应用[J]. 北京航空航天大学学报, 2014, 40(11): 1518-1525. |
[3] | 韩朋. 基于航空发动机性能的维修成本管理与控制研究[D]: [硕士学位论文]. 南京: 南京航空航天大学, 2009. |
[4] | 赵曼. 飞机设计中的制造与维修成本方法研究[D]: [硕士学位论文]. 上海: 上海交通大学, 2012. |
[5] | 张珊珊. 基于深度学习的虚拟大气环境数据生成方法[D]: [硕士学位论文]. 哈尔滨工业大学, 2020. |
[6] | 杨壮. 面向Bin Picking的虚拟数据集构建及智能识别方法的研究[D]: [硕士学位论文]. 华东理工大学, 2019. |
[7] | Bandalos, D.L. and Finney, S.J. (2018) Factor Analysis: Exploratory and Confirmatory: the Reviewer’s Guide to Quantitative Methods in the Social Sciences. Routledge, London, 98-122. https://doi.org/10.4324/9781315755649-8 |
[8] | Zhou, Q.H., Wu, G.Z., Wang, Z.X., et al. (2021) Analysis and Prediction of the Width of Spreading Carbon Fiber Tow Based on Gray System Theory. Journal of Applied Polymer Science, 138, Article ID: 50069.
https://doi.org/10.1002/app.50069 |
[9] | Li, J., Cheng, J.-H., Shi, J.-Y., et al. (2012) Brief Introduction of Back Propagation (BP) Neural Network Algorithm and Its Improvement. Advances in Computer Science and Information Engineering. Springer, Berlin, Heidelberg, 553-558. https://doi.org/10.1007/978-3-642-30223-7_87 |
[10] | Cui, K. and Jing, X. (2019) Research on Prediction Model of Geotechnical Parameters Based on BP Neural Network. Neural Computing and Applications, 31, 8205-8215. https://doi.org/10.1007/s00521-018-3902-6 |
[11] | Sharma, S., Sharma, S. and Athaiya, A. (2017) Activation Functions in Neural Networks. Towards Data Science, 6, 310-316. https://doi.org/10.33564/IJEAST.2020.v04i12.054 |
[12] | 方昌德. 世界航空发动机手册[M]. 北京: 航空工业出版社, 1996. |
[13] | 胡晓煜. 世界中小型航空发动机手册[M]. 北京: 航空工业出版社, 2006. |
[14] | 黄维娜, 李中祥. 国外航空发动机简明手册[M]. 西安: 西北工业大学出版社, 2014. |