全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

宽频高吸收双层吸波材料仿真设计及试验验证
Simulation and Experimentation of Wide Frequency Electromagnetic Shielding Coating

DOI: 10.12677/APP.2022.129059, PP. 503-511

Keywords: 干涉,损耗,吸波,双层介质
Interference
, Loss, Absorbing, Double Layer Medium

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用CST Microwave Studio电磁仿真软件对干涉型吸波材料、损耗型吸波材料及干涉/损耗型双层吸波材料的反射率进行仿真设计。仿真结果表明,干涉型吸波材料最大吸收频率点即干涉频率随着材料厚度的增加向低频移动,最大吸收率由材料的厚度决定;损耗型吸波材料最大吸收频率点随着材料厚度的增加向低频移动,最大吸收率由材料的电磁参数决定;干涉/损耗型双层吸波材料可有效地结合两种吸波材料的优势,实现拓宽吸收频段,增大最佳反射率。制备干涉/损耗型双层橡胶基平板吸波材料,并进行测试,结果表明:该材料不仅有效地拓宽了平板材料的吸收带宽(?10 dB),有效带宽为9 GHz,而且干涉频率附近实现了较强吸收峰(?47.8 dB),是一种“宽频、高效”的吸波材料设计方法。
The CST Microwave Studio electromagnetic simulation software was used to simulate and design the reflectivity of interference type absorbing materials, lossy absorbing materials and interference/lossy double-layer absorbing materials. The simulation results show the maximum absorption frequency point of the interference type wave absorbing material, that is, the interference frequency moves to the low frequency with the increase of the material thickness, and the maximum absorption rate is determined by the material thickness; the maximum absorption frequency point of lossy absorbing material moves to low frequency with the increase of material thickness, and the maximum absorption rate is determined by the electromagnetic parameters of the material. The interference/lossy double-layer absorbing material can effectively combine the advantages of the two absorbing materials to broaden the absorption frequency band and increase the optimal reflectivity. The interference/loss type double-layer rubber-based flat plate absorbing material was prepared and tested. The results showed that it not only effectively broadened the absorption bandwidth (?10 dB) of the flat plate material, the effective bandwidth was 9 GHz, but also achieved strong absorption near the interference frequency of peak (?47.8 dB), which is a “broadband, high-efficiency” design method for absorbing materials.

References

[1]  范芳岚, 陈炯, 等. 铁氧体吸波材料的研究进展[J]. 辽宁化工, 2021, 52(12): 1833-1838.
[2]  马虹. 基于吸波材料的5G射频天线干扰抑制应用研究[J]. 电子器件, 2021, 44(5): 1078-1083.
[3]  胡小赛, 沈勇, 王黎明, 等. 吸波材料结构、性能及应用研究进展[J]. 应用化工, 2015, 44(9): 1741-1746.
[4]  张敏. CST微波工作室用户全书[M]. 成都: 电子科技大学出版社, 2007.
[5]  黄爱萍, 冯则坤, 等. 干涉型多层吸波材料研究[J]. 材料导报, 2003, 17(4): 21-24.
[6]  彭俊豪, 郭建华, 蒋兴华. 吸波弹性体材料的研究进展[J]. 弹性体, 2021, 31(4): 75-82.
[7]  蔡云骧, 周志勇, 徐小倩, 等. 一种基于精英策略非支配排序遗传算法-Ⅱ的多层吸波涂层结构设计方法[J]. 兵工学报, 2015, 36(8): 1574-1579.
[8]  李佳乐, 向军, 叶芹, 等. Ni0.4Co0.2Zn0.4Fe2O4/BaTiO3纳米纤维双层吸波涂层的微波吸收特性研究[J]. 无机材料学报, 2015, 30(5): 479-486.
[9]  Namitha, L.K., Chameswary, J., Ananthakumar, S., et al. (2013) Effect of Micro- and Nano-Fillers on the Properties of Silicone Rubber-Alumina Flexible Microwave Substrate. Ceramics International, 39, 7077-7087.
https://doi.org/10.1016/j.ceramint.2013.02.047
[10]  Kim, S.T. and Kim, S.S. (2016) Microwave Absorbance of Ni-Fe Thin Films on Hollow Ceramic Microspheres Dispersed in a Rubber Matrix. Journal of Alloys and Compounds, 687, 22-27.
https://doi.org/10.1016/j.jallcom.2016.06.042

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133