全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

肠道菌群对现代膳食糖和甜味剂的适应性改变
Adaptation of Gut Microbiota to Modern Dietary Sugars and Sweeteners

DOI: 10.12677/ACM.2022.1291193, PP. 8280-8286

Keywords: 糖,甜味剂,肠道微生物,适应性改变
Sugar
, Sweeteners, Gut Microbes, Adaptive Changes

Full-Text   Cite this paper   Add to My Lib

Abstract:

现代社会人均摄糖量不断增长,由高糖饮食带来的各类代谢性疾病也是对人类健康的重要威胁,各种代替糖的甜味剂的使用正在迅速增加。本文综述了食物中的膳食糖和甜味剂对人类肠道微生物产生的各种潜在影响。
The daily sugar consumption of modern society is growing, and the various kinds of metabolic dis-eases, which are brought by the high sugar diet, are also a major threat to human health, and the use of sweeteners for sugar is increasing rapidly. This paper reviews the potential effects of dietary sugar and sweeteners on human intestinal microorganisms.

References

[1]  Daniels, J. and Daniels, C. (1993) Sugarcane in Prehistory. Archaeology in Oceania, 28, 1-7.
https://doi.org/10.1002/j.1834-4453.1993.tb00309.x
[2]  Centers for Disease Control and Prevention (US). Na-tional Center for Health Statistics (2022) National Health and Nutrition Examination Survey Data 2013-2014. US De-partment of Health and Human Services, Centers for Disease Control and Prevention, Hyattsville.
https://wwwn.cdc.gov/nchs/nhanes
[3]  Khan, T.A. and Sievenpiper, J.L. (2016) Controversies about Sugars: Results from Systematic Reviews and Meta-Analyses on Obesity, Cardiometabolic Disease and Diabetes. European Journal of Nutrition, 55, 25-43.
https://doi.org/10.1007/s00394-016-1345-3
[4]  Luger, M., Lafontan, M., Bes-Rastrollo, M., Winzer, E., Yumuk, V. and Farpour-Lambert, N. (2017) Sugar-Sweetened Beverages and Weight Gain in Children and Adults: A Systematic Review from 2013 to 2015 and a Comparison with Previous Studies. Obesity Facts, 10, 674-693.
https://doi.org/10.1159/000484566
[5]  Tappy, L. (2018) Fructose-Containing Caloric Sweeteners as a Cause of Obesity and Metabolic Disorders. Journal of Experimental Biology, 221, Article No. jeb164202.
https://doi.org/10.1242/jeb.164202
[6]  Jensen, T., Abdelmalek, M.F., Sullivan, S., Nadeau, K.J., Green, M., Roncal, C., et al. (2018) Fructose and Sugar: A Major Mediator of Non-Alcoholic Fatty Liver Disease. Journal of Hepatology, 68, 1063-1075.
https://doi.org/10.1016/j.jhep.2018.01.019
[7]  Ruxton, C.H.S., Gardner, E.J. and McNulty, H.M. (2009) Is Sugar Consumption Detrimental to Health? A Review of the Evidence 1995-2006. Critical Reviews in Food Science and Nutri-tion, 50, 1-19.
https://doi.org/10.1080/10408390802248569
[8]  Kassaar, O., Pereira Morais, M., Xu, S., Adam, E.L., Chamber-lain, R.C., Jenkins, B., et al. (2017) Macrophage Migration Inhibitory Factor Is Subjected to Glucose Modification and Oxidation in Alzheimer’s Disease. Scientific Reports, 7, Article No. 42874.
https://doi.org/10.1038/srep42874
[9]  Zheng, F., Yan, L., Yang, Z., Zhong, B. and Xie, W. (2018) HbA1c, Dia-betes and Cognitive Decline: The English Longitudinal Study of Ageing. Diabetologia, 61, 839-848.
https://doi.org/10.1007/s00125-017-4541-7
[10]  B?ckhed, F., Manchester, J.K., Semenkovich, C.F. and Gordon, J.I. (2007) Mechanisms Underlying the Resistance to Diet-Induced Obesity in Germ-Free Mice. Proceedings of the Na-tional Academy of Sciences of the United States of America, 104, 979-984.
https://doi.org/10.1073/pnas.0605374104
[11]  Turnbaugh, P.J., Ridaura, V.K., Faith, J.J., Rey, F.E., Knight, R. and Gordon, J.I. (2009) The Effect of Diet on the Human Gut Microbiome: A Metagenomic Analysis in Humanized Gnotobiotic Mice. Science Translational Medicine, 1, Article No. 6ra14.
https://doi.org/10.1126/scitranslmed.3000322
[12]  Turnbaugh, P.J., B?ckhed, F., Fulton, L. and Gordon, J.I. (2008) Diet-Induced Obesity Is Linked to Marked but Reversible Alterations in the Mouse Distal Gut Microbiome. Cell Host & Microbe, 3, 213-223.
https://doi.org/10.1016/j.chom.2008.02.015
[13]  Kashyap, P.C., Marcobal, A., Ursell, L.K., Smits, S.A., Sonnen-burg, E.D., Costello, E.K., et al. (2013) Genetically Dictated Change in Host Mucus Carbohydrate Landscape Exerts a Diet-Dependent Effect on the Gut Microbiota. Proceedings of the National Academy of Sciences of the United States of America, 110, 17059-17064.
https://doi.org/10.1073/pnas.1306070110
[14]  Jacob, F. and Monod, J. (1961) Genetic Regulatory Mechanisms in the Synthesis of Proteins. Journal of Molecular Biology, 3, 318-356.
https://doi.org/10.1016/S0022-2836(61)80072-7
[15]  Pastan, I. and Perlman, R. (1970) Cyclic Adenosine Mono-phosphate in Bacteria: In Many Bacteria the Synthesis of Inducible Enzymes Requires This Cyclic Nucleotide. Science, 169, 339-344.
https://doi.org/10.1126/science.169.3943.339
[16]  Mazmanian, S.K., Round, J.L. and Kasper, D.L. (2008) A Mi-crobial Symbiosis Factor Prevents Intestinal Inflammatory Disease. Nature, 453, 620-625.
https://doi.org/10.1038/nature07008
[17]  Marchesi, J.R. and Ravel, J. (2015) The Vocabulary of Microbiome Re-search: A Proposal. Microbiome, 3, Article No. 31.
https://doi.org/10.1186/s40168-015-0094-5
[18]  Carmody, R.N., Gerber, G.K., Luevano Jr., J.M., Gatti, D.M., Somes, L., Svenson, K.L. and Turnbaugh, P.J. (2015) Diet Domi-nates Host Genotype in Shaping the Murine Gut Microbiota. Cell Host & Microbe, 17, 72-84.
https://doi.org/10.1016/j.chom.2014.11.010
[19]  Rothschild, D., Weissbrod, O., Barkan, E., Kurilshikov, A., Ko-rem, T., Zeevi, D., et al. (2018) Environment Dominates over Host Genetics in Shaping Human Gut Microbiota. Nature, 555, 210-215.
https://doi.org/10.1038/nature25973
[20]  Sonnenburg, E.D., Smits, S.A., Tikhonov, M., Higginbottom, S.K., Wingreen, N.S. and Sonnenburg, J.L. (2016) Diet-Induced Extinctions in the Gut Microbiota Compound over Genera-tions. Nature, 529, 212-215.
https://doi.org/10.1038/nature16504
[21]  Holmes, A.J., Chew, Y.V., Colakoglu, F., Cliff, J.B., Klaassens, E., Read, M.N., et al. (2017) Diet-Microbiome Interactions in Health Are Controlled by Intestinal Nitrogen Source Constraints. Cell Metabolism, 25, 140-151.
https://doi.org/10.1016/j.cmet.2016.10.021
[22]  Schluter, J. and Foster, K.R. (2012) The Evolution of Mutualism in Gut Microbiota via Host Epithelial Selection. PLOS Biology, 10, Article ID: e1001424.
https://doi.org/10.1371/journal.pbio.1001424
[23]  Reese, A.T., Pereira, F.C., Schintlmeister, A., Berry, D., Wagner, M., Hale, L.P., et al. (2018) Microbial Nitrogen Limitation in the Mammalian Large Intestine. Nature Microbiology, 3, 1441-1450.
https://doi.org/10.1038/s41564-018-0267-7
[24]  National Center for Health Statistics, Center For Disease Control, & Prevention (2017) Health, United States, 2016, with Chartbook on Long-Term Trends in Health. National Center for Health Statistics, Hyattsville.
[25]  Ervin, R.B. and Ogden, C.L. (2013) Consumption of Added Sugars among US Adults, 2005-2010 (No. 122). US Department of Health and Human Services, Centers for Disease Control and Preven-tion, National Center for Health Statistics.
[26]  Edwards, C.A. (2012) Physiological Effects of Fiber. In: Kritchevsky, D., Bonfield, C.T. and Anderson, J.W., Eds., Dietary Fiber Chemistry, Physiology, and Health Effects, Springer, New York, 167-178.
[27]  Corazza, G.R., Strocchi, A., Rossi, R., Sirola, D. and Gasbarrini, G. (1988) Sorbitol Malabsorption in Normal Volunteers and in Patients with Coeliac Disease. Gut, 29, 44-48.
https://doi.org/10.1136/gut.29.1.44
[28]  Koizumi, N., Fujii, M., Ninomiya, R., Inoue, Y., Kagawa, T. and Tsuka-moto, T. (1983) Studies on Transitory Laxative Effects of Sorbitol and Maltitol I: Estimation of 50% Effective Dose and Maximum Non-Effective Dose. Chemosphere, 12, 45-53.
https://doi.org/10.1016/0045-6535(83)90178-9
[29]  Kyaw, M.H. and Mayberry, J.F. (2011) Fructose Malabsorp-tion: True Condition or a Variance from Normality. Journal of Clinical Gastroenterology, 45, 16-21.
https://doi.org/10.1097/MCG.0b013e3181eed6bf
[30]  Oku, T. and Okazaki, M. (1998) Transitory Laxative Threshold of Trehalose and Lactulose in Healthy Women. Journal of Nutritional Science and Vitaminology, 44, 787-798.
https://doi.org/10.3177/jnsv.44.787
[31]  Oku, T. and Okazaki, M. (1996) Laxative Threshold of Sugar Alcohol Erythritol in Human Subjects. Nutrition Research, 16, 577-589.
https://doi.org/10.1016/0271-5317(96)00036-X
[32]  Oku, T. and Okazaki, M. (1998) Transitory Laxative Thresh-old of Trehalose and Lactulose in Healthy Women. Journal of Nutritional Science and Vitaminology, 44, 787-798.
https://doi.org/10.3177/jnsv.44.787
[33]  Buddington, R.K. and Diamond, J.M. (1989) Ontogenetic Development of Intestinal Nutrient Transporters. Annual Review of Physiology, 51, 601-619.
https://doi.org/10.1146/annurev.ph.51.030189.003125
[34]  Jones, H.F., Butler, R.N. and Brooks, D.A. (2011) In-testinal Fructose Transport and Malabsorption in Humans. American Journal of Physiology—Gastrointestinal and Liver Physiology, 300, G202-G206.
https://doi.org/10.1152/ajpgi.00457.2010
[35]  Hutchinson, G.E. (1957) Concluding Remarks. Cold Spring Harbor Symposia on Quantitative Biology, 22, 415-427.
https://doi.org/10.1101/SQB.1957.022.01.039
[36]  Donaldson, G.P., Lee, S.M. and Mazmanian, S.K. (2016) Gut Biogeography of the Bacterial Microbiota. Nature Reviews Microbiology, 14, 20-32.
https://doi.org/10.1038/nrmicro3552
[37]  Sato, T. and Clevers, H. (2013) Growing Self-Organizing Mini-Guts from a Single Intestinal Stem Cell: Mechanism and Applications. Science, 340, 1190-1194.
https://doi.org/10.1126/science.1234852
[38]  Chang-Graham, A.L., Danhof, H.A., Engevik, M.A., Tomaro-Duchesneau, C., Karandikar, U.C., Estes, M.K., et al. (2019) Human Intestinal Enteroids with Inducible Neu-rogenin-3 Expression as a Novel Model of Gut Hormone Secretion. Cellular and Molecular Gastroenterology and Hepatology, 8, 209-229.
https://doi.org/10.1016/j.jcmgh.2019.04.010
[39]  Gehart, H., van Es, J.H., Hamer, K., Beumer, J., Kretzschmar, K., Dekkers, J.F., Rios, A. and Clevers, H. (2019) Identification of Enteroendocrine Regulators by Real-Time Single-Cell Differentiation Mapping. Cell, 176, 1158-1173.E16.
https://doi.org/10.1016/j.cell.2018.12.029
[40]  Rajan, A., Vela, L., Zeng, X.L., Yu, X., Shroyer, N., Blutt, S.E., et al. (2018) Novel Segment- and Host-Specific Patterns of Enteroaggregative Escherichia coli Adherence to Human Intes-tinal Enteroids. mBio, 9, e02419-17.
https://doi.org/10.1128/mBio.02419-17
[41]  Goodrich, J.K., Davenport, E.R., Beaumont, M., Jackson, M.A., Knight, R., Ober, C., et al. (2016) Genetic Determinants of the Gut Microbiome in UK Twins. Cell Host & Microbe, 19, 731-743.
https://doi.org/10.1016/j.chom.2016.04.017
[42]  Blekhman, R., Goodrich, J.K., Huang, K., Sun, Q., Bukowski, R., Bell, J.T., et al. (2015) Host Genetic Variation Impacts Microbiome Composition across Human Body Sites. Genome Bi-ology, 16, Article No. 191.
https://doi.org/10.1186/s13059-015-0759-1
[43]  Jahreis, K., Pimentel-Schmitt, E.F., Brückner, R. and Titgemeyer, F. (2008) Ins and Outs of Glucose Transport Systems in Eubacteria. FEMS Microbiology Reviews, 32, 891-907.
https://doi.org/10.1111/j.1574-6976.2008.00125.x
[44]  Townsend, G.E., Han, W., Schwalm III, N.D., Raghavan, V., Barry, N.A., Goodman, A.L. and Groisman, E.A. (2019) Dietary Sugar Silences a Colonization Factor in a Mamma-lian Gut Symbiont. Proceedings of the National Academy of Sciences of the United States of America, 116, 233-238.
https://doi.org/10.1073/pnas.1813780115
[45]  Sen, T., Cawthon, C.R., Ihde, B.T., Hajnal, A., DiLorenzo, P.M., Claire, B. and Czaja, K. (2017) Diet-Driven Microbiotadysbiosis Is Associated with Vagal Remodeling and Obesity. Physiology & Behavior, 173, 305-317.
https://doi.org/10.1016/j.physbeh.2017.02.027
[46]  Yin, X., Heeney, D.D., Srisengfa, Y.T., Chen, S.Y., Slupsky, C.M. and Marco, M.L. (2018) Sucrose Metabolism Alters Lactobacillus plantarum Survival and Interactions with the Microbiota in the Digestive Tract. FEMS Microbiology Ecology, 94, Article No. fiy084.
https://doi.org/10.1093/femsec/fiy084
[47]  Tytgat, H.L. and De Vos, W.M. (2016) Sugar Coating the Envelope: Glycoconjugates for Microbe-Host Crosstalk. Trends in Microbiology, 24, 853-861.
https://doi.org/10.1016/j.tim.2016.06.004
[48]  Donaldson, G.P., Ladinsky, M.S., Yu, K.B., Sanders, J.G., Yoo, B.B., Chou, W.C., Conner, M.E., Earl, A.M., Knight, R., Bjorkman, P.J., et al. (2018) Gut Microbiota Utilize Immuno-globulin A for Mucosal Colonization. Science, 360, 795-800.
https://doi.org/10.1126/science.aaq0926
[49]  Hanuszkiewicz, A., Pittock, P., Humphries, F., Moll, H., Rosales, A.R., Molinaro, A., et al. (2014) Identification of the Flagellin Glycosylation System in Burkholderia cenocepacia and the Contribution of Glycosylated Flagellin to Evasion of Human Innate Immune Responses. Journal of Biological Chem-istry, 289, 19231-19244.
https://doi.org/10.1074/jbc.M114.562603
[50]  Jann, K. and Jann, B. (1987) Polysaccharide Antigens of Esche-richia coli. Reviews of Infectious Diseases, 9, S517-S526.
https://doi.org/10.1093/clinids/9.Supplement_5.S517
[51]  Lee, Y.S., Kim, T.Y., Kim, Y., Lee, S.H., Kim, S., Kang, S.W., et al. (2018) Microbiota-Derived Lactate Accelerates Intestinal Stem-Cell-Mediated Epithelial Development. Cell Host & Microbe, 24, 833-846.E6.
https://doi.org/10.1016/j.chom.2018.11.002
[52]  Scheinin, A., M?kinen, K.K., Tammisalo, E. and Rekola, M. (1975) Turku Sugar Studies XVIII. Incidence of Dental Caries in Relation to 1-Year Consumption of Xylitol Chewing Gum. Acta Odontologica Scandinavica, 33, 269-278.
https://doi.org/10.3109/00016357509004632
[53]  M?kinen, K.K. (1978) Biochemical Principles of the Use of Xy-litol in Medicine and Nutrition with Special Consideration of Dental Aspects. Experientia Supplementum, Vol. 30, Birkh?user, Basel, 1-160.
https://doi.org/10.1007/978-3-0348-5757-4
[54]  Thaiss, C.A., Levy, M., Grosheva, I., Zheng, D., Soffer, E., Blacher, E., et al. (2018) Hyperglycemia Drives Intestinal Barrier Dysfunction and Risk for Enteric Infection. Science, 359, 1376-1383.
https://doi.org/10.1126/science.aar3318

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133