|
一株菲降解菌的降解条件优化及生长动力学研究
|
Abstract:
在实验室摇瓶规模下进行试验研究,确定一株属于假单胞菌属的菲降解菌的最适培养条件,最适pH为6.0,30℃,接种量10%,添加1000 mg/L丙酮酸钠作为共代谢底物可以达到最佳的降解效果,7 d可以将100 mg/L的菲降解92.76%。对于多种PAHs底物广谱性试验表明,7 d可以将30 mg/L的萘完全降解,对30 mg/L菲的降解率达93.53%,对30 mg/L芘的降解率为47.16%。本文的研究成果对于利用微生物修复实际污染土壤具有较好的参考意义。
An experimental study was carried out on a laboratory shake flask scale to determine the optimum culture conditions for a phenanthrene-degrading bacteria belonging to the genus Pseudomonas. The optimum pH was 6.0, 30?C, and the inoculation amount was 10%. The addition of 1000 mg/L sodium pyruvate as co-metabolism substrate could achieve the best degradation effect. And the bacteriacould degrade 100 mg/L of phenanthrene by 92.76% in 7d. For a variety of PAHs substrate broad-spectrum test showed that it can completely decompose 30 mg/L naphthalene, the degradation rate of phenanthrene to 30 mg/L was 93.53%, and the degradation rate to 30 mg/L technetium was 47.16% after 7 days. The research results in this paper have good reference significance for the use of microorganisms to remediate actual contaminated soil.
[1] | 孙海波. 多环芳烃降解菌的筛选、鉴定, 降解特性及邻苯二酚-2, 3-双加氧酶的初步研究[D]: [硕士学位论文]. 济南: 山东大学, 2009. |
[2] | 王蕾. 降解多环芳烃优良菌的筛选分离及代谢性能研究[D]: [硕士学位论文]. 西安: 西安建筑科技大学, 2007. |
[3] | 吉云秀, 邵秘华. 多环芳烃的污染及其生物修复[J]. 交通环保, 2003, 24(5): 33-36. |
[4] | 张兰英. 现代环境微生物技术[M]. 北京: 清华大学出版社, 2007. |
[5] | Yuan, S.Y., Shiung, L.C. and Chang, B.V. (2002) Biodegradation of Polycyclic Aromatic Hydrocarbons by Inoculated Microorganisms in Soil. Bulletin of Environmental Contamination & Toxicology, 69, 66-73.
https://doi.org/10.1007/s00128-002-0011-z |
[6] | Mallick, S., Chakraborty, J. and Dutta, T.K. (2011) Role of Oxygenases in Guiding Diverse Metabolic Pathways in the Bacterial Degradation of Low-Molecular-Weight Polycyclic Aromatic Hydrocarbons: A Review. Critical Reviews in Microbiology, 37, 64. https://doi.org/10.3109/1040841X.2010.512268 |
[7] | Simarro, R., González, N., Bautista, L.F., et al. (2011) Opti-misation of Key Abiotic Factors of PAH (Naphthalene, Phenanthrene and Anthracene) Biodegradation Process by a Bac-terial Consortium. Water Air & Soil Pollution, 217, 365-374. https://doi.org/10.1007/s11270-010-0593-8 |
[8] | Moscoso, F., Teijiz, I., Deive, F.J., et al. (2012) Efficient PAHs Biodegradation by a Bacterial Consortium at Flask and Bioreactor Scale. Bioresource Technology, 119, 270. https://doi.org/10.1016/j.biortech.2012.05.095 |
[9] | Seo, J.S., Keum, Y.S., Hu, Y., et al. (2007) Degradation of Phenanthrene by Burkholderia sp. C3: Initial 1,2- and 3,4-Dioxygenation and Meta- and Ortho-Cleavage of Naphtha-lene-1,2-Diol. Biodegradation, 18, 123-131.
https://doi.org/10.1007/s10532-006-9048-8 |
[10] | Saito, A., Iwabuchi, T. and Harayama, S. (2000) A Novel Phe-nanthrene Dioxygenase from Nocardioides sp. Strain KP7: Expression in Escherichia Coli. Journal of Bacteriology, 182, 2134-2141.
https://doi.org/10.1128/JB.182.8.2134-2141.2000 |
[11] | Chakrabarty, A.M. (1972) Genetic Basis of the Biodegrada-tion of Salicylate in Pseudomonas. Journal of Bacteriology, 112, 815-823. https://doi.org/10.1128/jb.112.2.815-823.1972 |
[12] | Lee, K., Park, J.W. and Ahn, I.S. (2003) Effect of Additional Carbon Source on Naphthalene Biodegradation by Pseudomonas Putida G7. Journal of Hazardous Materials, 105, 157-167. https://doi.org/10.1016/j.jhazmat.2003.08.005 |
[13] | Zhao, H.P., Liang, S.H. and Yang, X. (2011) Isolation and Characterization of Catechol 2,3-Dioxygenase Genes from Phenanthrene Degraders Sphingomonas sp. ZP1 and Pseudomonas sp. ZP2. Environmental Technology, 32, 1895-1901. https://doi.org/10.1080/09593330.2011.568007 |
[14] | Tao, X.Q., Lu, G.N., Dang, Z., et al. (2007) A Phenan-threne-Degrading Strain Sphingomonas sp. GY2B Isolated from Contaminated Soils. Process Biochemistry, 42, 401-408. https://doi.org/10.1016/j.procbio.2006.09.018 |