|
二维MOFs基电催化剂在电解水领域的研究进展
|
Abstract:
二维金属–有机框架材料(MOFs)具有较高的比表面积、多孔性、良好的导电性、丰富的活性位点等优异性能,从而引起研究人员们的广泛关注,其中构建二维纳米结构是提高电催化剂催化性能的一种有效途径,尤其是在电解水方面,二维纳米结构作为电催化剂展现出其巨大的应用潜力。目前,研究人员已在二维MOFs材料的制备方面进行了广泛的研究,同时也很好地将二维MOFs材料作为电催化剂用于HER和OER反应当中。在本文当中,分别总结了关于二维MOFs材料自上而下和自下而上的两大类合成方法以及每种方法所存在的优势和缺陷,然后介绍了二维MOFs材料在电解水电催化方面相关的具体应用。最后讨论了二维MOFs材料在电催化方面所面临的挑战和当前的局势,并对未来的发展方向进行了展望。
Two-dimensional metal-organic frameworks (MOFs) materials have attracted the interest of researchers because of their excellent properties such as high specific sur-face area, porosity, good electrical conductivity and abundant active sites. The construction of two-dimensional nanostructures is an effective way to improve the catalytic performance of elec-trocatalysts, especially in water splitting as an electrocatalyst shows great application potential. At present, researchers have made extensive studies on the preparation of two-dimensional MOFs materials, and also well used two-dimensional MOFs materials as electrocatalysts for HER and OER reactions. In this paper, two kinds of synthesis methods of two-dimensional MOFs materials, top-down and bottom-up, as well as the advantages and disadvantages of each method are summa-rized, and the application of two-dimensional MOFs in electrolysis and hydropower catalysis is in-troduced. Finally, the challenges and current situation in electrocatalysis of two-dimensional MOFs materials are discussed, and the future development direction was prospected.
[1] | 刘洋洋, 孙燕芳, 靳文, 等. 直接甲醇燃料电池阳极催化剂的研究进展[J]. 电源技术, 2019, 43(8): 1397-1402. |
[2] | 丁鑫, 张栋铭, 焦纬洲, 等. 直接甲醇燃料电池阳极催化剂研究进展[J]. 化工进展, 2021,40(9): 4918-4930. |
[3] | 张巧, 王剑平, 赵君, 等. 直接甲醇燃料电池阳极催化剂载体的研究进展[J]. 贵金属, 2021: 1-8. |
[4] | 罗远来, 梁振兴, 廖世军, 等. 直接甲醇燃料电池阳极催化剂研究进展[J]. 催化学报, 2010, 31(2): 141-149. |
[5] | Yuan, X.L., Jiang, B., Cao, M.H., et al. (2022) Porous Pt Nanoframes Decorated with Bi(OH)3 as Highly Efficient and Stable Elec-trocatalyst for Ethanol Oxidation Reaction. Nano Research, 13, 265-272.
https://doi.org/10.1007/s12274-019-2609-z |
[6] | Gong, L.Y., Yang, Z.Y., Li, K., et al. (2018) Recent Development of Methanol Electrooxidation Catalysts for Direct Methanol Fuel Cell. Journal of Energy Chemistry, 27, 1618-1628. https://doi.org/10.1016/j.jechem.2018.01.029 |
[7] | Li, H.Y., Wu, X.S., Tao, X.L., et al. (2018) Direct Synthesis of Ultrathin Pt Nanowire Arrays as Catalysts for Methanol Oxidation. Small, 16, Article ID: 2001135. https://doi.org/10.1002/smll.202001135 |
[8] | Alisa, S.M., Zhang, G., Kisailus, D., et al. (2010) Porous Platinum Nanotubes for Oxygen Reduction and Methanol Oxidation Reactions. Advanced Functional Materials, 20, 3742-3746. https://doi.org/10.1002/adfm.201001035 |
[9] | Yuan, X.L., Jiang, X.Q., Cao, M.H., et al. (2019) Intermetallic PtBi Core/Ultrathin Pt Shell Nanoplates for Efficient and Stable Methanol and Ethanol Electro-Oxidization. Nano Research, 12, 429-436.
https://doi.org/10.1007/s12274-018-2234-2 |
[10] | Li, Z.Y., Jiang, X., Wang, X.R., et al. (2020) Concave PtCo Nanocrosses for Methanol Oxidation Reaction. Applied Catalysis B: Environmental, 277, Article ID: 119135. https://doi.org/10.1016/j.apcatb.2020.119135 |
[11] | Shi, Y.D., Zhu, W.X., Shi, H.X., et al. (2019) Mesocrystal PtRu Supported on Reduced Graphene Oxide as Catalysts for Methanol Oxidation Reaction. Journal of Colloid and Interface Science, 557, 729-736.
https://doi.org/10.1016/j.jcis.2019.09.038 |
[12] | Kwon, S., Ham, D.J., Kim, T., et al. (2018) Active Methanol Oxida-tion Reaction by Enhanced CO Tolerance on Bimetallic Pt/Ir Electrocatalysts Using Electronic and Bifunctional Effects. ACS Applied Materials & Interfaces, 10, 39581-39589. https://doi.org/10.1021/acsami.8b09053 |
[13] | Yang, P.P., Yuan, X.L., Hu, H.C., et al. (2018) Solvothermal Synthesis of Alloyed PtNi Colloidal Nanocrystal Clusters (CNCs) with Enhanced Catalytic Activity for Methanol Oxidation. Advanced Functional Materials, 28, Article ID: 1704774. https://doi.org/10.1002/adfm.201704774 |
[14] | Zhang, S., Zeng, Z.C., Li, Q.Q., et al. (2021) Lanthanide Electronic Perturbation in Pt-Ln (La, Ce, Pr and Nd) Alloys for Enhanced Methanol Oxidation Reaction Activity. Energy & Envi-ronmental Science, 14, 5911-5918.
https://doi.org/10.1039/D1EE02433G |
[15] | Liang, W.K., Wang, Y.W., Zhao, L., et al. (2021) 3D Anisotropic Au@Pt-Pd Hemispherical Nanostructures as Efficient Electrocatalysts for Methanol, Ethanol, and Formic Acid Oxidation Reaction. Advanced Materials, 33, Article ID: 2100713. https://doi.org/10.1002/adma.202100713 |
[16] | Baronia, R., Goel, J., Tiwari, S., et al. (2017) Efficient Electro-Oxidation of Methanol Using PtCo Nanocatalysts Supported Reduced Graphene Oxide Matrix as Anode for DMFC. International Journal of Hydrogen Energy, 42, 10238-10247.
https://doi.org/10.1016/j.ijhydene.2017.03.011 |
[17] | Shi, X.Q., Wen, Y., Guo, X.Y., et al. (2017) Dentritic CuPtPd Catalyst for Enhanced Electrochemical Oxidation of Methanol. ACS Applied Materials & Interfaces, 9, 25995-26000. https://doi.org/10.1021/acsami.7b06296 |
[18] | Zhang, J.X., Yuan, M.L., Zhao, T.K., et al. (2021) Cu-Incorporated PtBi Intermetallic Nanofiber Bundles Enhance Alcohol Oxidation Electrocatalysis with High CO Tolerance. Journal of Materials Chemistry A, 9, 20676-20684.
https://doi.org/10.1039/D1TA06015E |
[19] | Zhang, J.X., Zhao, T.K., Yuan, M.L., et al. (2021) Trimetallic Synergy in Dendritic Intermetallic PtSnBi Nanoalloys for Promoting Electrocatalytic Alcohol Oxidation. Journal of Colloid and Interface Science, 602, 504-512.
https://doi.org/10.1016/j.jcis.2021.06.028 |
[20] | Li, J.R., Jilani, S.Z., Lin, H.H., et al. (2019) Ternary CoPtAu Na-noparticles as a General Catalyst for Highly Efficient Electro-Oxidation of Liquid Fuels. Angewandte Chemie Interna-tional Edition, 58, 11527-11533.
https://doi.org/10.1002/anie.201906137 |
[21] | Zhang, Y. and Mcginn, P.J. (2012) Combinatorial Screening for Methanol Oxidation Catalysts in Alloys of Pt, Cr, Co and V. Journal of Power Sources, 206, 29-36. https://doi.org/10.1016/j.jpowsour.2012.01.016 |
[22] | Cheng, N., Zhang, L., Jiang, H.Y., et al. (2019) Local-ly-Ordered PtNiPb Ternary Nano-Pompons as Efficient Bifunctional Oxygen Reduction and Methanol Oxidation Cata-lysts. Nanoscale, 11, 16945-16953.
https://doi.org/10.1039/C9NR04053F |
[23] | Zeng, K.Z., Zhang, J.W., Gao, W.Q., et al. (2022) Surface-Decorated High-Entropy Alloy Catalysts with Significantly Boosted Activity and Stability. Advanced Functional Materials, 6, Arti-cle ID: 2204643.
https://doi.org/10.1002/adfm.202204643 |
[24] | Loffler, T., Ludwig, A., Rossmeisl, J., et al. (2021) What Makes High-Entropy Alloys Exceptional Electrocatalysts? Angewandte Chemie International Edition, 60, 26894-26903. https://doi.org/10.1002/anie.202109212 |
[25] | Li, H.D., Han, Y., Zhao, H., et al. (2020) Fast Site-to-Site Electron Transfer of High-Entropy Alloy Nanocatalyst Driving Redox Electrocatalysis. Nature Communications, 11, Article No. 5437.
https://doi.org/10.1038/s41467-020-19277-9 |
[26] | Zhu, H., Zhu, Z.F., Hao, J.S., et al. (2022) High-Entropy Alloy Stabilized Active Ir for Highly Efficient Acidic Oxygen Evolution. Chemical Engineering Journal, 431, Article ID: 133251. https://doi.org/10.1016/j.cej.2021.133251 |
[27] | Jia, Z., Nomoto, K., Wang, Q., et al. (2021) A Self-Supported High-Entropy Metallic Glass with a Nanosponge Architecture for Efficient Hydrogen Evolution under Alkaline and Acidic Conditions. Advanced Functional Materials, 31, Article ID: 2101586. https://doi.org/10.1002/adfm.202101586 |
[28] | Zhan, C.H., Xu, Y., Bu, L.Z., et al. (2021) Subnanometer High-Entropy Alloy Nanowires Enable Remarkable Hydrogen Oxidation Catalysis. Nature Communications, 12, Article No. 6261. https://doi.org/10.1038/s41467-021-26425-2 |
[29] | Wang, B., Yao, Y.F., Yu, X.W., et al. (2021) Under-standing the Enhanced Catalytic Activity of High Entropy Alloys: From Theory to Experiment. Journal of Materials Chemistry A, 9, 19410-19438. https://doi.org/10.1039/D1TA02718B |
[30] | Kumar Katiyar, N., Biswas, K., Yeh, J.W., et al. (2021) A Perspective on the Catalysis Using the High Entropy Alloys. Nano Energy, 88, Article ID: 106261. https://doi.org/10.1016/j.nanoen.2021.106261 |
[31] | Qin, J., Li, Z.Z., Leng, D.Y., et al. (2021) PtGd/Gd2O3 Al-loy/Metal Oxide Composite Catalyst for Methanol Oxidation Reaction. International Journal of Hydrogen Energy, 46, 25782-25789. https://doi.org/10.1016/j.ijhydene.2021.05.102 |
[32] | Huang, H.J., Zhu, J.X., Li, D.B., et al. (2017) Pt Nanoparticles Grown on 3D RuO2-Modified Graphene Architectures for Highly Efficient Methanol Oxidation. Journal of Materials Chemistry A, 5, 4560-4567.
https://doi.org/10.1039/C6TA10548C |
[33] | Guo, D.J., Qiu, X.P., Zhu, W.T., et al. (2009) Synthesis of Sulfated ZrO2/MWCNT Composites as New Supports of Pt Catalysts for Direct Methanol Fuel Cell Application. Applied Cataly-sis B: Environmental, 89, 597-601.
https://doi.org/10.1016/j.apcatb.2009.01.025 |
[34] | Zhang, K.F., Qiu, J., Wu, J., et al. (2022) Morphological Tuning Engineering of Pt@TiO2/Graphene Catalysts with Optimal Active Surfaces of Support for Boosting Catalytic Perfor-mance for Methanol Oxidation. Journal of Materials Chemistry A, 10, 4254-4265. https://doi.org/10.1039/D1TA09359B |
[35] | Qiao, M., Wu, H., Meng, F.Y., et al. (2022) Defect-Rich, Highly Po-rous PtAg Nanoflowers with Superior Anti-Poisoning Ability for Efficient Methanol Oxidation Reaction. Small, 18, Ar-ticle ID: 2106643.
https://doi.org/10.1002/smll.202106643 |
[36] | Xu, F., Cai, S.B., Lin, B.F., et al. (2022) Geometric Engineering of Porous PtCu Nanotubes with Ultrahigh Methanol Oxidation and Oxygen Reduction Capability. Small, 18, Article ID: 2107387. https://doi.org/10.1002/smll.202107387 |
[37] | Kwon, T., Jun, M., Kim, H.Y., et al. (2018) Ver-tex-Reinforced PtCuCo Ternary Nanoframes as Efficient and Stable Electrocatalysts for the Oxygen Reduction Reaction and the Methanol Oxidation Reaction. Advanced Functional Materials, 28, Article ID: 1706440. https://doi.org/10.1002/adfm.201706440 |
[38] | Yuda, A., Ashok, A. and Kumar, A. (2022) A Comprehensive and Critical Review on Recent Progress in Anode Catalyst for Methanol Oxidation Reaction. Catalysis Reviews, 64, 126-228.
https://doi.org/10.1080/01614940.2020.1802811 |
[39] | Sagado, J.R.C., Paganin, V.A., Gonzalez, E.R., et al. (2013) Characterization and Performance Evaluation of Pt-Ru Electrocatalysts Supported on Different Carbon Materials for Di-rect Methanol Fuel Cells. International Journal of Hydrogen Energy, 38, 910-920. https://doi.org/10.1016/j.ijhydene.2012.10.079 |
[40] | Abdel Hameed, R.M. and El-sherif, R.M. (2015) Microwave Irradiated Nickel Nanoparticles on Vulcan XC-72R Carbon Black for Methanol Oxidation Reaction in KOH Solution. Applied Catalysis B: Environmental, 162, 217-226.
https://doi.org/10.1016/j.apcatb.2014.06.057 |
[41] | Shanmugapriya, S., Kasturi, P.R., Zhu, P., et al. (2020) Hex-anedioic Acid Mediated in Situ Functionalization of Interconnected Graphitic 3D Carbon Nanofibers as Pt Support for Trifunctional Electrocatalysts. Sustainable Energy & Fuels, 4, 2808-2822. https://doi.org/10.1039/D0SE00136H |
[42] | Dum, J., Chen, B.L., Hu, Y., et al. (2018) Pt-Based Alloy Nanoparti-cles Embedded Electrospun Porous Carbon Nanofibers as Electrocatalysts for Methanol Oxidation Reaction. Journal of Alloys and Compounds, 747, 978-988.
https://doi.org/10.1016/j.jallcom.2018.03.003 |
[43] | Liu, G.Y., Bonakdarpour, A., Wang, X.D., et al. (2019) Anti-mony-Doped Tin Oxide Nanofibers as Catalyst Support Structures for the Methanol Oxidation Reaction in Direct Meth-anol Fuel Cells. Electrocatalysis, 10, 262-271.
https://doi.org/10.1007/s12678-019-00524-7 |
[44] | Mu, X., Xu, Z.Q., Xie, Y.H., et al. (2017) Pt Nanoparticles Supported on Co Embedded Coal-Based Carbon Nanofiber for Enhanced Electrocatalytic Activity towards Methanol Electro-Oxidation. Journal of Alloys and Compounds, 711, 374-380. https://doi.org/10.1016/j.jallcom.2017.04.008 |
[45] | Ding, J.J., Hu, W.L., Ma, L., et al. (2021) Facile Construction of Mesoporous Carbon Enclosed with NiCoPx Nanoparticles for Desirable Pt-Based Catalyst Support in Methanol Oxida-tion. Journal of Power Sources, 481, Article ID: 228888.
https://doi.org/10.1016/j.jpowsour.2020.228888 |
[46] | Zhang, C.W., Xu, L.B., Shan, N.N., et al. (2014) Enhanced Electrocatalytic Activity and Durability of Pt Particles Supported on Ordered Mesoporous Carbon Spheres. ACS Cataly-sis, 4, 1926-1930. https://doi.org/10.1021/cs500107t |
[47] | Zhang, Y.M., Liu, Y., Liu, W.H., et al. (2017) Synthesis of Honeycomb-Like Mesoporous Nitrogen-Doped Carbon Nanospheres as Pt Catalyst Supports for Methanol Oxidation in Alkaline Media. Applied Surface Science, 407, 64-71.
https://doi.org/10.1016/j.apsusc.2017.02.158 |
[48] | Yu, N.F., Shu, Z.W., Fu, G.G., et al. (2022) Den-drimer-Encapsulated PtSn Bimetallic Ultrafine Nanoparticles Supported on Graphitic Mesoporous Carbon as Efficient Electrocatalysts for Methanol Oxidation. Journal of Materials Research and Technology, 18, 1555-1565. https://doi.org/10.1016/j.jmrt.2022.03.057 |
[49] | Zhang, X.L., Ma, J., Yan, R.W., et al. (2021) Pt-Ru/Polyaniline/Carbon Nanotube Composites with Three-Layer Tubular Structure for Efficient Methanol Oxidation. Journal of Alloys and Compounds, 867, Article ID: 159017.
https://doi.org/10.1016/j.jallcom.2021.159017 |
[50] | Fan, J.J., Fan, Y.J., Wang, R.X., et al. (2017) A Novel Strategy for the Synthesis of Sulfur-Doped Carbon Nanotubes as a Highly Efficient Pt Catalyst Support toward the Methanol Oxidation Reaction. Journal of Materials Chemistry A, 5, 19467-19475. https://doi.org/10.1039/C7TA05102F |
[51] | Wang, Z.C., Zhou, S.Y., Liao, W., et al. (2022) Tuning Surface Com-position of Multiwalled Carbon Nanotubes Supported Pt-Co Bimetallic Nanoparticles for Boosting Methanol Oxidation Catalysis. International Journal of Hydrogen Energy, 47, 16056-16064. https://doi.org/10.1016/j.ijhydene.2022.03.093 |
[52] | Sekar, A., Metzger, N., Rajendrans, A., et al. (2022) PtRu Cat-alysts on Nitrogen-Doped Carbon Nanotubes with Conformal Hydrogenated TiO2 Shells for Methanol Oxidation. ACS Applied Nano Materials, 5, 3275-3288.
https://doi.org/10.1021/acsanm.1c03742 |