全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于CEEMDAN-GWO-KELM模型对我国电力需求预测
Electricity Demand Forecasting in China Based on CEEMDAN-GWO-KELM Model

DOI: 10.12677/CSA.2022.129210, PP. 2073-2083

Keywords: 中长期电力,电力需求,稀疏贝叶斯学习,模态分解,核极限学习机
Medium and Long-Term Electricity
, Electricity Demand, Sparse Bayesian Learning, Modal Decomposition, Kernel Extreme Learning Machine

Full-Text   Cite this paper   Add to My Lib

Abstract:

中长期电力预测是电力系统规划主要研究之一,也是学界和业界广泛关注的热点之一。本文构建合理的电力需求影响因素指标体系,通过稀疏贝叶斯学习和相关性分析筛选出关键性指标。利用自适应噪声完备经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise, CEEMDAN)将电力需求数据分解成多个信号分量(intrinsic mode function, IMF),并将其作为待预测分量。利用灰狼优化算法(Grey Wolf Optimizer, GWO)对核极限学习机(Kernel Based Extreme Learning Machine, KELM)的参数进行优化,建立了CEEMDAN-GWO-KELM多重组合模型。通过1960~2020年的电力需求数据做模型对比的实证分析,验证了该模型的有效性,并对我国中长期电力需求进行预测。
Medium- and long-term power forecasting is one of the main studies in power system planning, and one of the hot spots widely concerned by academia and industry. In this paper, we construct a reasonable index system of power demand influencing factors, and screen out key indexes by sparse bayesian learning (SBL) and correlation analysis. Using complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), the electricity demand data are decomposed into multiple signal components (intrinsic mode function, IMF) and the IMF is used as the component to be predicted. The parameters of the kernel based extreme learning machine (KELM) are optimized by the grey wolf optimizer (GWO), and a CEEMDAN-GWO-KELM multiple combination model is developed. The empirical analysis of model comparison is done through the electricity demand data from 1960 to 2020 to verify the validity and accuracy of the model and to forecast the medium and long-term electricity demand in China.

References

[1]  Mohammed, N.A. (2018) Modelling of Unsuppressed Electrical Demand Forecasting in Iraq for Long Term. Energy, 162, 354-363.
https://doi.org/10.1016/j.energy.2018.08.030
[2]  Wang, X.F. and McDonald, J.R. (1994) Modern Power System Planning. McGraw-Hill Companies, New York.
[3]  Oliveira, E.D. and Oliveira, F.C. (2018) Forecast-ing Mid-Long Term Electric Energy Consumption through Bagging ARIMA and Exponential Smoothing Methods. En-ergy, 144, 776-788.
https://doi.org/10.1016/j.energy.2017.12.049
[4]  Nazih, A.S. and Fawwaz, E. (2011) Me-dium-Term Electric Load Forecasting Using Singular Value Decomposition. Energy, 36, 4259-4271.
https://doi.org/10.1016/j.energy.2011.04.017
[5]  李云霞. 差分灰色模型在中长期电力负荷预测中的应用研究[D]: [硕士学位论文]. 北京: 华北电力大学, 2019.
[6]  He, Y., Jiao, J., Chen, Q., Ge, S., Chang, Y. and Xu, Y. (2017) Urban Long Term Electricity Demand Forecast Method Based on System Dynamics of the New Economic Nor-mal: The Case of Tianjin. Energy, 133, 9-22.
https://doi.org/10.1016/j.energy.2017.05.107
[7]  Pai, P.F. and Hong, W.C. (2005) Forecasting Regional Electric-ity Load Based on Recurrent Support Vector Machines with Genetic Algorithms. Electric Power Systems Research, 74, 417-425.
https://doi.org/10.1016/j.epsr.2005.01.006
[8]  Kandil, M.S., El-Debeiky, S.M. and Hasanien, N.E. (2002) Long-Term Load Forecasting for Fast Developing Utility Using a Knowledge-Based Expert System. IEEE Transactions on Power Systems, 17, 491-496.
https://doi.org/10.1109/TPWRS.2002.1007923
[9]  Moral-Carcedo, J. and Pérez-García, J. (2017) Integrating Long-Term Economic Scenarios into Peak Load Forecasting: An Application to Spain. Energy, 140, 682-695.
https://doi.org/10.1016/j.energy.2017.08.113
[10]  Ardakani, F.J. and Ardehali, M.M. (2014) Long-Term Electrical Energy Consumption Forecasting for Developing and Developed Economies Based on Different Optimized Models and Historical Data Types. Energy, 65, 452-461.
https://doi.org/10.1016/j.energy.2013.12.031
[11]  Hisashi, T., Yoshiyasu, T. and Seisho, S. (2016) Using the En-semble Kalman Filter for Electricity Load Forecasting and Analysis. Energy, 104, 184-198.
https://doi.org/10.1016/j.energy.2016.03.070
[12]  Priyanka, S., Pragya, D. and Kant, V. (2019) A Hybrid Method Based on Neural Network and Improved Environmental Adaptation Method Using Controlled Gaussian Mutation with Real Parameter for Short-Term Load Forecasting. Energy, 174, 460-477.
https://doi.org/10.1016/j.energy.2019.02.141
[13]  陈焕. 基于CEEMDAN-GWO-KELM模型的国际原油价格预测研究[D]: [硕士学位论文]. 成都: 西南财经大学, 2019.
[14]  肖欣, 周渝慧, 张宁, 韩新阳, 薛万磊, 唐鑫, 等. 城镇化进程与电力需求增长的关系研究[J]. 中国电力, 2015, 48(2): 145-149+160.
[15]  张进芳. 产业结构调整对电力需求的影响及其模型构建[D]: [硕士学位论文]. 北京: 华北电力大学, 2016.
[16]  赵会茹, 周佳, 郭森, 韩新阳, 薛万磊. 影响中长期电力需求的经济社会发展指标体系研究[J]. 陕西电力, 2015, 43(8): 71-77+81.
[17]  杨国鹏, 周欣, 余旭初. 稀疏贝叶斯模型与相关向量机学习研究[J]. 计算机科学, 2010, 37(7): 225-228.
[18]  张建文, 刘洋, 张大朋, 张寰宇. 基于CEEMDAN与小波自适应阈值的去噪新方法[J]. 电测与仪表, 2018, 55(10): 14-18+33.
[19]  Alsaber, A.R., Pan, J.Z. and Al Hurban, A. (2021) Handling Complex Missing Data Using Random Forest Approach for an Air Quality Monitoring Dataset: A Case Study of Kuwait Environmental Data (2012 to 2018). International Journal of Environmental Research and Public Health, 18, Article No. 1333.
https://doi.org/10.3390/ijerph18031333
[20]  许宪春, 唐雅, 胡亚茹. “十四五”规划纲要经济社会发展主要指标研究[J]. 中共中央党校(国家行政学院)学报, 2021, 25(4): 90-99.
[21]  胡鞍钢, 周绍杰. 2035中国: 迈向共同富裕[J/OL]. 北京工业大学学报(社会科学版): 1-22. http://kns.cnki.net/kcms/detail/11.4558.g.20211123.0845.004.html, 2021-12-28.
[22]  李平, 娄峰, 王宏伟. 2016-2035年中国经济总量及其结构分析预测[J]. 中国工程科学, 2017, 19(1): 13-20.
[23]  孔亦舒. 我国各省份经济发展迅速为2035年人均GDP达到中等发达国家水平提供有力支撑[J]. 中国经贸导刊, 2021(15): 29-32.
[24]  杨舸. 我国“十四五”时期的人口变动及重大“转变” [J]. 北京工业大学学报(社会科学版), 2021, 21(1): 17-29.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133