全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于分子动力学模拟研究YTHDF3与m6A修饰RNA的相互作用动力学及关键位点
Study on the Interacting Dynamics and Key Residues between YTHDF3 and m6A-Mediated RNA Based on Molecular Dynamics Simulation

DOI: 10.12677/HJCB.2022.123005, PP. 32-39

Keywords: YTHDF3,分子动力学,关键残基,YTHDF3 (YTH Family Protein 3), Molecular Dynamics, Key Residues

Full-Text   Cite this paper   Add to My Lib

Abstract:

YTHDF3 (YTH domain family protein 3)能够特异性识别N6-甲基腺嘌呤(N6-methylladenosine, m6A)修饰的RNA,参与调控mRNA加工代谢、正常生理和异常病理等重要生命进程,与许多癌症息息相关。研究YTHDF3与m6A修饰RNA的相互作用动力学及关键位点具有重要意义。在本工作中,采用分子动力学(Molecular dynamics, MD)模拟方法研究了YTHDF3单体及与甲基化RNA复合物的动力学性质。研究发现,甲基化RNA的结合使得YTHDF3结构更加紧凑,构象更加稳定。运动相关性分析揭示了YTHDF3上负责结合甲基化RNA的重要区域。最后,构造运动相关性加权的复杂网络,识别了参与m6A修饰特异性识别的关键残基,与实验结果高度吻合。另外,还识别了一些远离结合界面但对结构稳定发挥重要功能的残基。本研究有助于理解YTHDF3与m6A修饰RNA之间的相互作用和关键位点,可为靶向药物设计提供重要信息。
YTHDF3 (YTH domain family protein 3) plays an important role in regulating mRNA processing, metabolism, normal physiology and abnormal pathology, which is associated with a variety of cancers. Investigating the interacting dynamics and key residues between YTHDF3 and m6A-mediated RNA is of important significance. Here, the molecular dynamics (MD) simulation is utilized to analyze the dynamic properties of YTHDF3 on apo and bound to methylated RNA states. The results reveal that upon RNA binding, the structure and the conformation of YTHDF3 become more com-pact and stable. The dynamical cross-correlated map analysis shows the important regions on YTHDF3 for the binding of methylated RNA. Finally, the covariance matrix is weighted to protein structure network for analyzing the key residues associated with specific interaction of m6A-modified RNA, which is consistent with the experimental information. In addition, we also find the residues which are far away from the binding interface but critical for the structural stability of YTHDF3. This study is helpful for the understanding of the interaction and key residues of YTHDF3 and m6A-mediated RNA, and can provide important information for the related drug design.

References

[1]  Liao, S., Sun, H. and Xu, C. (2018) YTH Domain: A Family of N6-methyladenosine (m6A) Readers. Genomics Prote-omics Bioinformatics, 16, 99-107.
https://doi.org/10.1016/j.gpb.2018.04.002
[2]  Li, Y., Bedi, R.K., Moroz-Omori, E.V. and Caflisch, A. (2020) Structural and Dynamic Insights into Redundant Function of YTHDF Proteins. Journal of Chemical Information and Modeling, 60, 5932-5935.
https://doi.org/10.1021/acs.jcim.0c01029
[3]  Patil, D.P., Pickering, B.F. and Jaffrey, S.R. (2018) Reading m6A in the Transcriptome: m6A-Binding Proteins. Trends in Cell Biology, 28, 113-127.
https://doi.org/10.1016/j.tcb.2017.10.001
[4]  Ma, C., Liao, S. and Zhu, Z. (2019) Crystal Structure of Human YTHDC2 YTH Domain. Biochemical and Biophysical Research Communications, 518, 678-684.
https://doi.org/10.1016/j.bbrc.2019.08.107
[5]  Chang, G., Shi, L., Ye, Y., Shi, H., Zeng, L., Tiwary, S., et al. (2020) YTHDF3 Induces the Translation of m6A-Enriched Gene Transcripts to Promote Breast Cancer Brain Metastasis. Cancer Cell, 38, 857-871.e7.
https://doi.org/10.1016/j.ccell.2020.10.004
[6]  Xu, C., Liu, K., Ahmed, H., Loppnau, P., Schapira, M. and Min, J. (2015) Structural Basis for the Discriminative Recognition of N6-Methyladenosine RNA by the Human YT521-B Ho-mology Domain Family of Proteins. Journal of Biological Chemistry, 290, 24902-24913.
https://doi.org/10.1074/jbc.M115.680389
[7]  Wang, X., Lu, Z., Gomez, A., Hon, G.C., Yue, Y., Han, D., et al. (2014) N6-Methyladenosine-Dependent Regulation of Messenger RNA Stability. Nature, 505, 117-120.
https://doi.org/10.1038/nature12730
[8]  Li, Y., Bedi, R.K., Wiedmer, L., Sun, X., Huang, D. and Caflisch, A. (2021) Atomistic and Thermodynamic Analysis of N6-Methyladenosine (m6A) Recognition by the Reader Domain of YTHDC1. Journal of Chemical Theory and Computation, 17, 1240-1249.
https://doi.org/10.1021/acs.jctc.0c01136
[9]  Jorgensen, W.L., Chandrasekhar, J. and Madura, J.D. (1983) Com-parison of Simple Potential Functions for Simulating Liquid Water. The Journal of Chemical Physics, 79, 926-935.
https://doi.org/10.1063/1.445869
[10]  Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., et al. (2013) GROMACS 4.5: A High-Throughput and Highly Parallel Open Source Molecular Simulation Toolkit. Bioinformatics, 29, 845-854.
https://doi.org/10.1093/bioinformatics/btt055
[11]  Huang, J. and MacKerell, A.J. (2013) CHARMM36 All-Atom Additive Protein Force Field: Validation Based on Comparison to NMR Data. Journal of Computational Chemistry, 34, 2135-2145.
https://doi.org/10.1002/jcc.23354
[12]  Xu, Y., Vanommeslaeghe, K., Aleksandrov, A., MacKerell, A.D., MacKerell, J. and Nilsson, L. (2016) Additive CHARMM Force Field for Naturally Occurring Modified Ribonu-cleotides. Journal of Computational Chemistry, 37, 896-912.
https://doi.org/10.1002/jcc.24307
[13]  Darden, T., York, D. and Pedersen, L. (1993) Particle Mesh Ewald: An Nlog(N) Method for Ewald Sums in Large Systems. Journal of Chemical Physics, 98, 10089-10092.
https://doi.org/10.1063/1.464397
[14]  Hess, B. (2008) P-LINCS: A Paral-lel Linear Constraint Solver for Molecular Simulation. Journal of Chemical Theory and Computation, 4, 116-122.
https://doi.org/10.1021/ct700200b
[15]  Shao, Q., Gong, W. and Li, C. (2020) A Study on Allosteric Communica-tion in U1A-snRNA Binding Interactions: Network Analysis Combined with Molecular Dynamics Data. Biophysical Chemistry, 264, Article ID: 106393.
https://doi.org/10.1016/j.bpc.2020.106393
[16]  Krepl, M., Damberger, F.F., von Schroetter, C., Theler, D., Pokor-ná, P., Allain, F.H., et al. (2021) Recognition of N6-Methyladenosine by the YTHDC1 YTH Domain Studied by Molec-ular Dynamics and NMR Spectroscopy: The Role of Hydration. The Journal of Physical Chemistry B, 125, 7691-7705.
https://doi.org/10.1021/acs.jpcb.1c03541
[17]  Luo, S. and Tong, L. (2014) Molecular Basis for the Recognition of Methylated Adenines in RNA by the Eukaryotic YTH Domain. Proceedings of the National Academy of Sciences of the United States of America, 111, 13834-13839.
https://doi.org/10.1073/pnas.1412742111
[18]  Shi, R., Ying, S., Li, Y., Zhu, L., Wang, X. and Jin, H. (2021) Linking the YTH Domain to Cancer: The Importance of YTH Family Proteins in Epigenetics. Cell Death & Disease, 12, Article No. 346.
https://doi.org/10.1038/s41419-021-03625-8
[19]  Zhang, Z., Theler, D., Kaminska, K.H., Hiller, M., de la Grange, P., Pudimat, R., et al. (2010) The YTH Domain Is a Novel RNA Binding Domain. Journal of Biological Chemistry, 285, 14701-14710.
https://doi.org/10.1074/jbc.M110.104711
[20]  Govindaraju, G., Kadumuri, R.V., Sethumadhavan, D.V., Jabeena, C.A., Chavali, S. and Rajavelu, A. (2020) N6-Adenosine Methylation on mRNA Is Recognized by YTH2 Domain Pro-tein of Human Malaria Parasite Plasmodium falciparum. Epigenetics & Chromatin, 13, Article No. 33.
https://doi.org/10.1186/s13072-020-00355-7
[21]  Xu, C., Wang, X., Liu, K., Roundtree, I.A., Tempel, W., Li, Y., et al. (2014) Structural Basis for Selective Binding of m6A RNA by the YTHDC1 YTH Domain. Nature Chemical Bi-ology, 10, 927-929.
https://doi.org/10.1038/nchembio.1654
[22]  Xu, C., Wang, X., Liu, K., et al. (2014) Structural Basis for Se-lective Binding of m6A RNA by the YTHDC1 YTH Domain. Nature Chemical Biology, 10, 927-929.
https://doi.org/10.1038/nchembio.1654
[23]  Luo, S. and Tong, L. (2014) Molecular Basis for the Recognition of Methylated Adenines in RNA by the Eukaryotic YTH Domain. Proceedings of the Na-tional Academy of Sciences of the United States of America (PNAS), 111, 13834-13839.
https://doi.org/10.1073/pnas.1412742111

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133