全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

冠状动脉微血管内皮功能紊乱的药物治疗进展
Progress in Drug Therapy of Coronary Microvascular Endothelial Dysfunction

DOI: 10.12677/ACM.2022.1291171, PP. 8130-8138

Keywords: 冠脉微血管,内皮细胞,他汀类药物,降压药物,降糖药物
Coronary Microvasculature
, Endothelial Cell, Statins, Antihypertensive Drugs, Hypoglycemic Drugs

Full-Text   Cite this paper   Add to My Lib

Abstract:

冠状动脉微血管疾病(CMVD)在心绞痛发生中的作用近年来受到了越来越多的关注,研究表明CMVD也是心血管不良事件的高危因素。然而,CMVD病因复杂、症状不典型、诊断困难,CMVD患者常常不能被及时诊断及妥善治疗。目前已知冠状动脉微血管内皮细胞(CMEC)功能异常是CMVD重要发病机制之一,能够改善冠状动脉微血管内皮功能紊乱的药物可能通过干预CMVD发病机制,为CMVD患者的治疗带来希望。本文对CMEC功能有改善的药物及其作用机制进行综述,为CMVD患者药物治疗提供理论及实践依据。
The role of coronary microvascular disease (CMVD) in the occurrence of angina pectoris has at-tracted more and more attention in recent years. Studies have shown that CMVD is also a risk factor for major adverse cardiovascular events. However, the etiology of CMVD is complex, the symptoms are atypical, and the diagnosis is difficult. Patients with CMVD are often not timely diagnosed and properly treated. At present, it is known that the dysfunction of coronary microvascular endothelial cells (CMEC) is one of the important pathogenesis of CMVD. Drugs that can improve the dysfunction of coronary microvascular endothelial cells may interfere with the pathogenesis of CMVD and bring hope for the treatment of CMVD patients. In this paper, the drugs with improved CMEC function and their mechanisms were reviewed to provide theoretical and practical basis for drug treatment of CMVD patients.

References

[1]  张运, 陈韵岱, 傅向华, 等. 冠状动脉微血管疾病诊断和治疗的中国专家共识[J]. 中国循环杂志, 2017, 32(5): 421-430.
[2]  Chen, G., Xu, C., Gillette, T.G., et al. (2020) Cardiomyocyte-Derived Small Extracellular Vesicles Can Signal eNOS Activation in Cardiac Microvascular Endothelial Cells to Protect against Ischemia/Reperfusion Injury. Theranostics, 10, 11754-11774.
https://doi.org/10.7150/thno.43163
[3]  尹安雯, 沈玲红, 何奔. 冠状动脉微血管内皮细胞功能紊乱机制的研究进展[J]. 中华心血管病杂志, 2021, 49(1): 90-95.
[4]  Schwartz, B.G., Econo-mides, C., Mayeda, G.S., et al. (2010) The Endothelial Cell in Health and Disease: Its Function, Dysfunction, Measure-ment and Therapy. International Journal of Impotence Research, 22, 77-90.
https://doi.org/10.1038/ijir.2009.59
[5]  Ni, X.Q., Zhu, J.H., Yao, N.H., et al. (2013) Statins Suppress Glu-cose-Induced Plasminogen Activator Inhibitor-1 Expression by Regulating RhoA and Nuclear Factor-κB Activities in Cardiac Microvascular Endothelial Cells. Experimental Biology and Medicine (Maywood), 238, 37-46.
https://doi.org/10.1258/ebm.2012.012127
[6]  Pan, Q., Xie, X., Guo, Y., et al. (2014) Simvastatin Promotes Car-diac Microvascular Endothelial Cells Proliferation, Migration and Survival by Phosphorylation of p70 S6K and FoxO3a. Cell Biology International, 38, 599-609.
https://doi.org/10.1002/cbin.10236
[7]  Wilkinson, E.L., Sidaway, J.E. and Cross, M.J. (2018) Statin Regulated ERK5 Stimulates Tight Junction Formation and Reduces Permeability in Human Cardiac Endothelial Cells. The Journal of Cellular Physiology, 233, 186-200.
https://doi.org/10.1002/jcp.26064
[8]  Hu, K. and Wan, Q. (2019) Biphasic Influence of Pravastatin on Human Cardiac Microvascular Endothelial Cell Functions under Pathological and Physiological Conditions. Biochemical and Bi-ophysical Research Communications, 511, 476-481.
https://doi.org/10.1016/j.bbrc.2019.02.090
[9]  Kayikcioglu, M., Payzin, S., Yavuzgil, O., et al. (2003) Benefits of Statin Treatment in Cardiac Syndrome-X1. European Heart Jour-nal, 24, 1999-2005.
https://doi.org/10.1016/S0195-668X(03)00478-0
[10]  Kabakli?, A. and Fras, Z. (2017) Mod-erate-Dose Atorvastatin Improves Arterial Endothelial Function in Patients with Angina Pectoris and Normal Coronary Angiogram: A Pilot Study. Archives of Medical Science, 13, 827-836.
https://doi.org/10.5114/aoms.2017.68238
[11]  Zhang, X., Li, Q., Zhao, J., et al. (2014) Effects of Combination of Statin and Calcium Channel Blocker in Patients with Cardiac Syndrome X. Coronary Artery Disease, 25, 40-44.
https://doi.org/10.1097/MCA.0000000000000054
[12]  Arroyo-Espliguero, R. and Kaski, J.C. (2006) Microvascu-lar Dysfunction in Cardiac Syndrome X: The Role of Inflammation. Canadian Medical Association Journal, 174, 1833-1834.
https://doi.org/10.1503/cmaj.051331
[13]  Wang, K., Li, B., Xie, Y., et al. (2020) Statin Rosuvastatin Inhibits Apoptosis of Human Coronary Artery Endothelial Cells through Upregulation of the JAK2/STAT3 Signaling Pathway. Molecular Medicine Reports, 22, 2052-2062.
https://doi.org/10.3892/mmr.2020.11266
[14]  Yang, J., Sun, M., Cheng, R., et al. (2022) Pitavastatin Activates Mitophagy to Protect EPC Proliferation through a Calcium-Dependent CAMK1-PINK1 Pathway in Atherosclerotic Mice. Communications Biology, 5, Article No. 124.
https://doi.org/10.1038/s42003-022-03081-w
[15]  Sahebkar, A., Kotani, K., Serban, C., et al. (2015) Statin Thera-py Reduces Plasma Endothelin-1 Concentrations: A Meta-Analysis of 15 Randomized Controlled Trials. Atherosclerosis, 241, 433-442.
https://doi.org/10.1016/j.atherosclerosis.2015.05.022
[16]  Schlaifer, J.D., Wargovich, T.J., O’neill, B., et al. (1997) Effects of Quinapril on Coronary Blood Flow in Coronary Artery Disease Patients with Endothelial Dysfunction. TREND Investigators. Trial on Reversing Endothelial Dysfunction. The American Journal of Cardiology, 80, 1594-1597.
https://doi.org/10.1016/S0002-9149(97)00750-9
[17]  Nickenig, G., St?blein, A., Wassmann, S., et al. (2000) Acute Effects of ACE Inhibition on Coronary Endothelial Dysfunction. Journal of the Renin-Angiotensin-Aldosterone System, 1, 361-364.
https://doi.org/10.3317/jraas.2000.067
[18]  Shahin, Y., Khan, J.A., Samuel, N., et al. (2011) Angiotensin Converting Enzyme Inhibitors Effect on Endothelial Dysfunction: A Meta-Analysis of Randomised Con-trolled Trials. Atherosclerosis, 216, 7-16.
https://doi.org/10.1016/j.atherosclerosis.2011.02.044
[19]  Fearon, W.F., Okada, K., Kobashigawa, J.A., et al. (2017) Angiotensin-Converting Enzyme Inhibition Early after Heart Transplantation. Journal of the American College of Cardiology, 69, 2832-2841.
https://doi.org/10.1016/j.jacc.2017.03.598
[20]  Lenasi, H., Kohlstedt, K., Fichtlscherer, B., et al. (2003) Amlodi-pine Activates the Endothelial Nitric Oxide Synthase by Altering Phosphorylation on Ser1177 and Thr495. Cardiovas-cular Research, 59, 844-853.
https://doi.org/10.1016/S0008-6363(03)00505-4
[21]  Matsubara, M. and Hasegawa, K. (2005) Benidipine, a Di-hydropyridine-Calcium Channel Blocker, Prevents Lysophosphatidylcholine-Induced Injury and Reactive Oxygen Spe-cies Production in Human Aortic Endothelial Cells. Atherosclerosis, 178, 57-66.
https://doi.org/10.1016/j.atherosclerosis.2004.08.020
[22]  Hayashi, T., Yamaguchi, T., Sakakibara, Y., et al. (2014) eNOS-Dependent Antisenscence Effect of a Calcium Channel Blocker in Human Endothelial Cells. PLOS ONE, 9, e88391.
https://doi.org/10.1371/journal.pone.0088391
[23]  Li, M., Li, J., Meng, G., et al. (2015) Protective Effects of Diltiazem against Vascular Endothelial Cell Injury Induced by Angiotensin-II and Hypoxia. Clinical and Experimental Pharmacology and Physiology, 42, 337-343.
https://doi.org/10.1111/1440-1681.12371
[24]  Garg, R., Rao, A.D., Baimas-George, M., et al. (2015) Mineralo-corticoid Receptor Blockade Improves Coronary Microvascular Function in Individuals with Type 2 Diabetes. Diabetes, 64, 236-242.
https://doi.org/10.2337/db14-0670
[25]  Brown, S.M., Meuth, A.I., Davis, J.W., et al. (2018) Miner-alocorticoid Receptor Antagonism Reverses Diabetes-Related Coronary Vasodilator Dysfunction: A Unique Vascular Transcriptomic Signature. Pharmacological Research, 134, 100-108.
https://doi.org/10.1016/j.phrs.2018.06.002
[26]  Sakima, A., Arima, H., Matayoshi, T., et al. (2021) Effect of Min-eralocorticoid Receptor Blockade on Arterial Stiffness and Endothelial Function: A Meta-Analysis of Randomized Trials. Hypertension, 77, 929-937.
https://doi.org/10.1161/HYPERTENSIONAHA.120.16397
[27]  Huang, X.Z., Zhang, Y., Zhang, M. and Sun, Y. (2010) Effect of Carvedilol on Coronary Flow Reserve in Patients with Hypertensive Left-Ventricular Hypertrophy. Blood Press, 19, 40-47.
https://doi.org/10.3109/08037050903450492
[28]  Pearson, J.T., Thambyah, H.P., Wad-dingham, M.T., et al. (2021) β-Blockade Prevents Coronary Macro- and Microvascular Dysfunction Induced by a High Salt Diet and Insulin Resistance in the Goto-Kakizaki Rat. Clinical Science (London), 135, 327-346.
https://doi.org/10.1042/CS20201441
[29]  Davis, B.J., Xie, Z., Viollet, B., et al. (2006) Activation of the AMP-Activated Kinase by Antidiabetes Drug Metformin Stimulates Nitric Oxide Synthesis in Vivo by Promoting the Association of Heat Shock Protein 90 and Endothelial Nitric Oxide Synthase. Diabetes, 55, 496-505.
https://doi.org/10.2337/diabetes.55.02.06.db05-1064
[30]  Hu, J., Zheng, Z., Li, X., et al. (2021) Metformin Atten-uates Hypoxia-Induced Endothelial Cell Injury by Activating the AMP-Activated Protein Kinase Pathway. Journal of Cardiovascular Pharmacology, 77, 862-874.
https://doi.org/10.1097/FJC.0000000000001028
[31]  Wang, D., Luo, P., Wang, Y., et al. (2013) Glucagon-Like Peptide-1 Protects against Cardiac Microvascular Injury in Diabetes via a cAMP/PKA/Rho-Dependent Mechanism. Dia-betes, 62, 1697-1708.
https://doi.org/10.2337/db12-1025
[32]  Zhang, Y., Zhou, H., Wu, W., et al. (2016) Lirag-lutide Protects Cardiac Microvascular Endothelial Cells against Hypoxia/Reoxygenation Injury through the Suppression of the SR-Ca(2+)-XO-ROS Axis via Activation of the GLP-1R/PI3K/Akt/Survivin Pathways. Free Radical Biology & Medicine, 95, 278-292.
https://doi.org/10.1016/j.freeradbiomed.2016.03.035
[33]  Cheng, C.K., Luo, J.Y., Lau, C.W., et al. (2021) A GLP-1 Analog Lowers ER Stress and Enhances Protein Folding to Ameliorate Homocysteine-Induced Endothelial Dys-function. Acta Pharmacologica Sinica, 42, 1598-1609.
https://doi.org/10.1038/s41401-020-00589-x
[34]  Fan, L., Zhou, W., Zhang, L., et al. (2019) Sitagliptin Protects against Hypoxia/Reoxygenation (H/R)-Induced Cardiac Microvascular Endothelial Cell Injury. The American Journal of Translational Research, 11, 2099-2107.
[35]  Fan, X., Yang, Y. and Qi, L. (2020) Vildagliptin Protects Hypox-ia/Reoxygenation-Induced Injury of Cardiac Microvascular Endothelial Cells. Minerva Medica.
https://doi.org/10.23736/S0026-4806.20.06682-3
[36]  Zhang, Z., Jin, X., Yang, C., et al. (2019) Teneligliptin Pro-tects against Hypoxia/Reoxygenation-Induced Endothelial Cell Injury. Biomedicine & Pharmacotherapy, 109, 468-474.
https://doi.org/10.1016/j.biopha.2018.10.016
[37]  Zhou, H., Wang, S., Zhu, P., et al. (2018) Empagliflozin Rescues Diabetic Myocardial Microvascular Injury via AMPK-Mediated Inhibition of Mitochondrial Fission. Redox Biology, 15, 335-346.
https://doi.org/10.1016/j.redox.2017.12.019
[38]  Adingupu, D.D., G?pel, S.O., Gr?nros, J., et al. (2019) SGLT2 Inhibition with Empagliflozin Improves Coronary Microvascular Function and Cardiac Contractility in Prediabetic ob/ob(-/-) Mice. Cardiovascular Diabetology, 18, Article No. 16.
https://doi.org/10.1186/s12933-019-0820-6
[39]  Cai, C., Guo, Z., Chang, X., et al. (2022) Empagliflozin Attenu-ates Cardiac Microvascular Ischemia/Reperfusion through Activating the AMPKα1/ULK1/FUNDC1/Mitophagy Path-way. Redox Biology, 52, Article ID: 102288.
https://doi.org/10.1016/j.redox.2022.102288
[40]  Sposito, A.C., Breder, I., Soares, A.A.S., et al. (2021) Dapagli-flozin Effect on Endothelial Dysfunction in Diabetic Patients with Atherosclerotic Disease: A Randomized Ac-tive-Controlled Trial. Cardiovascular Diabetology, 20, Article No. 74.
https://doi.org/10.1186/s12933-021-01264-z
[41]  Zhou, X., Wu, Y., Ye, L., et al. (2019) Aspirin Alleviates Endo-thelial Gap Junction Dysfunction through Inhibition of NLRP3 Inflammasome Activation in LPS-Induced Vascular In-jury. Acta Pharmaceutica Sinica B, 9, 711-723.
https://doi.org/10.1016/j.apsb.2019.02.008
[42]  Guan, B., Zhao, L., Ma, D., et al. (2021) The Effect of Ticagrelor on Endothelial Function Compared to Prasugrel, Clopidogrel, and Placebo: A Systematic Review and Meta-Analysis. Frontiers in Cardiovascular Medicine, 8, Article ID: 820604.
https://doi.org/10.3389/fcvm.2021.820604
[43]  Hua, B., Liu, Q., Cui, H., et al. (2017) TCTAP A-051 Nicorandil Protects Cardiac Microvascular Endothelial Cells from Ad-vanced Glycation End Products Induced Cytotoxicity by Promoting Autophagy. Journal of the American College of Car-diology, 69, S27.
https://doi.org/10.1016/j.jacc.2017.03.079
[44]  Zhan, B., Xu, Z., Zhang, Y., et al. (2020) Nicorandil Reversed Homocysteine-Induced Coronary Microvascular Dysfunction via Regulating PI3K/Akt/eNOS Pathway. Biomedicine & Pharmacotherapy, 127, Article ID: 110121.
https://doi.org/10.1016/j.biopha.2020.110121
[45]  Jiang, X., Wu, D., Jiang, Z., et al. (2021) Protective Effect of Nicorandil on Cardiac Microvascular Injury: Role of Mitochondrial Integrity. Oxidative Medicine and Cellular Longevity, 2021, Article ID: 4665632.
https://doi.org/10.1155/2021/4665632
[46]  中华医学会心血管病学分会, 中华心血管病杂志编辑委员会. ST段抬高型心肌梗死患者急诊PCI微循环保护策略中国专家共识[J]. 中华心血管病杂志, 2022, 50(3): 221-230.
[47]  Buzinari, T.C., Oishi, J.C., De Moraes, T.F., et al. (2017) Treatment with Sodium Nitroprusside Im-proves the Endothelial Function in Aortic Rings with Endothelial Dysfunction. European Journal of Pharmaceutical Sciences, 105, 144-149.
https://doi.org/10.1016/j.ejps.2017.04.022
[48]  Zhang, Y., Wernly, B., Cao, X., et al. (2021) Adenosine and Adenosine Receptor-Mediated Action in Coronary Microcirculation. Basic Research in Cardiolo-gy, 116, Article No. 22.
https://doi.org/10.1007/s00395-021-00859-7

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133