|
海藻来源的真菌天然产物研究进展
|
Abstract:
海洋蕴含丰富的动植物和微生物资源,由于其特殊的环境(高压、高盐度、低温、低氧和寡营养等),使得生存在海洋中的动植物和微生物的代谢产物具有特异性。海洋微生物往往共附生于海洋动植物,它们之间存在着相互依赖和营养竞争等关系。因此,海洋动植物内生微生物可能会产生某些化合物去竞争营养物质,这些产物是获得先导化合物和新药前体的重要资源。本文综述了近年来,从海洋褐藻、红藻和绿藻来源真菌天然产物研究进展,以期为海洋微生物活性先导化合物的发现提供借鉴。
The ocean is rich in animal, plant and microorganism resources. Due to its special environment (high pressure, high salinity, low temperature, low oxygen and oligotrophic, etc.), the metabolites of animals, plants and microorganisms living in the ocean are specific. Marine microorganisms are often co-exist with marine animals and plants, and there are relationships between them, such as interdependence and nutrient competition. Therefore, endophytic microorganisms of marine plants and animals may produce compounds to compete for nutrients, and these products are important resources for obtaining lead compounds and precursors for new drugs. In this paper, the research progress on natural products of fungi derived from brown algae, red algae and green algae was reviewed in order to provide reference for the discovery of active lead compounds of marine microorganisms.
[1] | 时振振. 五株海藻附生真菌次生代谢产物化学结构与生物活性研究[D]: [博士学位论文]. 烟台: 中国科学院烟台海岸带研究所, 2018. |
[2] | 史清文, 李力更, 王于方, 等. 海洋天然产物化学研究新进展[J]. 药学学报, 2010, 45(10): 1212-1223. |
[3] | 朱伟明, 王俊锋. 海洋真菌生物活性物质研究之管见[J]. 菌物学报, 2011, 30(2): 218-228. |
[4] | Lawen, A., Traber, R., Geyl, D., et al. (1989) Cell-Free Biosynthesis of New Cyclosporins. The Journal of Antibiotics, 42, 1283-1289. https://doi.org/10.7164/antibiotics.42.1283 |
[5] | 刘阳, 肖庚富. 环孢菌素A的研究进展及应用[J]. 生物技术通报, 2006(2): 21-24. |
[6] | Kanoh, K., Kohno, S., Asari, T., et al. (1997) (?)-Phenylahistin: A New Mammalian Cell Cycle Inhibitor Produced by Aspergillus ustus. Bioorganic & Medicinal Chemistry Letter, 7, 2847-2852.
https://doi.org/10.1016/S0960-894X(97)10104-4 |
[7] | Kanoh, K., Kohno, S., Katada, J., et al. (1999) Antitumor Activity of Phenylahistin in Vitro and in Vivo. Bioorganic & Medicinal Chemistry Letter, 63, 1130-1133. https://doi.org/10.1271/bbb.63.1130 |
[8] | Nicholson, B., Lloyd, K., Miller, B., et al. (2006) NPI-2358 Is a Tubu-lin-Depolymerizing Agent: In-Vitro Evidence for Activity as a Tumor Vascular-Disrupting Agent. Anti-Cancer Drugs, 17, 25-31.
https://doi.org/10.1097/01.cad.0000182745.01612.8a |
[9] | 孙天文, 丁忠鹏, 王世潇, 等. 海洋抗肿瘤候选药物普那布林(plinabulin)及其类似物的研究进展[J]. 中国海洋药物, 2016, 35(4): 79-86. |
[10] | Sun, H.-F., Li, X.-M., Meng, L.-H., et al. (2012) Asperolides A-C, Tetranorlabdane Diterpenoids from the Marine Alga-Derived Endophytic Fungus Aspergillus wentii EN-48. Journal of Natural Products, 75, 148-152.
https://doi.org/10.1021/np2006742 |
[11] | Sun, H.-F., Li, X.-M., Meng, L.-H., et al. (2013) Two New Secoanthra-quinone Derivatives from the Marine-Derived Endophytic Fungus Aspergillus wentii EN-48. Helvetica Chimica Acta, 96, 458-462.
https://doi.org/10.1002/hlca.201200201 |
[12] | Li, X., Li, X.-M., Xu, G.-M., et al. (2014) Antioxidant Metabolites from Marine Alga-Derived Fungus Aspergillus wentii EN-48. Phytochemistry Letters, 7, 120-123. https://doi.org/10.1016/j.phytol.2013.11.008 |
[13] | Ebada, S., Fischer, T., Hamacher, A., et al. (2014) A New Cy-clotripeptide, from Co-Fermentation of Two Marine Alga-Derived Fungi of the Genus Aspergillus. Natural Product Re-search, 28, 776-781.
https://doi.org/10.1080/14786419.2014.880911 |
[14] | Zhuravleva, O., Sobolevskaya, M., Afiyatullov, S., et al. (2014) Sargassopenillines A-G, 6,6-Spiroketals from the Alga-Derived Fungi Penicillium thomii and Penicillium lividum. Marine Drugs, 12, 5930-5943.
https://doi.org/10.3390/md12125930 |
[15] | 杨海滨. 两株海藻内生真菌次级代谢产物及其生物活性的研究[D]: [硕士学位论文]. 青岛: 青岛科技大学, 2015. |
[16] | Sobolevskaya, M., Zhuravleva, O., Leshchenko, E., et al. (2016) New Metabolites from the Alga-Derived Fungi Penicillium thomii Maire and Penicillium lividum Westling. Phytochemis-try Letters, 15, 7-12.
https://doi.org/10.1016/j.phytol.2015.10.016 |
[17] | Sobolevskaya, M., Leshchenko, E., Hoai, T., et al. (2016) Pal-lidopenillines: Polyketides from the Alga-Derived Fungus Penicillium thomii Maire KMM 4675. Journal of Natural Products, 79, 3031-3038.
https://doi.org/10.1021/acs.jnatprod.6b00624 |
[18] | Yurchenko, A., Smetanina, O., Ivanets, E., et al. (2016) Pretrichodermamides D-F from a Marine Algicolous Fungus Penicillium sp. KMM 4672. Marine Drugs, 14, 122-140. https://doi.org/10.3390/md14070122 |
[19] | Song, Y.-P., Liu, X.-H., Shi, Z.-Z., et al. (2018) Bisabolane, Cy-clonerane, and Harziane Derivatives from the Marine- Alga-Endophytic Fungus Trichoderma asperellum cf44-2. Phyto-chemistry, 152, 45-52.
https://doi.org/10.1016/j.phytochem.2018.04.017 |
[20] | Song, Y.-P., Shi, Z.-Z., Miao, F.-P., et al. (2018) Tricho-lumin A, a Highly Transformed Ergosterol Derivative from the Alga-Endophytic Fungus Trichoderma asperellum. Or-ganic Letters, 20, 6306-6309.
https://doi.org/10.1021/acs.orglett.8b02821 |
[21] | Sun, R.-R., Miao, F.-P., Zhang, J., et al. (2013) Three New Xan-thone Derivatives from an Algicolous Isolate of Aspergillus wentii. Magnetic Resonance in Chemistry, 51, 65-68. https://doi.org/10.1002/mrc.3903 |
[22] | Zhang, P., Ma?ndi, A., Li, X.M., et al. (2014) Varioxepine A, a 3H-Oxepine-Containing Alkaloid with a New Oxa-Cage from the Marine Algal-Derived Endophytic Fungus Paecilomy-ces variotii. Organic Letters, 16, 4834-4837.
https://doi.org/10.1021/ol502329k |
[23] | Zhang, P., Li, X.-M., Wang, J.-N., et al. (2015) Oxepine-Containing Diketopiperazine Alkaloids from the Algal-De- rived Endophytic Fungus Paecilomyces variotii EN-291. Helvetica Chimica Acta, 98, 800-804.
https://doi.org/10.1002/hlca.201400328 |
[24] | May Zin, W.-W., Buttachon, S., Buaruang, J., et al. (2015) A New Meroditerpene and a New Tryptoquivaline Analog from the Algicolous Fungus Neosartorya takakii KUFC 7898. Ma-rine Drugs, 13, 3776-3790.
https://doi.org/10.3390/md13063776 |
[25] | 王佳宁. 海藻内生真菌杂色曲霉EN-298和皮落青霉EN-311化学成分研究[D]: [硕士学位论文]. 青岛: 中国科学院海洋研究所, 2015. |
[26] | Zhang, P., Li, X.-M., Mao, X.-X., et al. (2016) Varioloid A, a New Indolyl-6,10b-dihydro-5aH-[1]benzo-furo[2,3- b]indole Derivative from the Marine Al-ga-Derived Endophytic Fungus Paecilomyces variotii EN-291. Beilstein Journal of Organic Chemistry, 12, 2012-2018. https://doi.org/10.3762/bjoc.12.188 |
[27] | Zhang, P., Li, X.-M., Mao, X.-X., et al. (2018) Correction: Varioloid A, a New Indolyl-6,10b-dihydro-5aH-[1]benzo- furo[2,3-b]indole Derivative from the Marine Alga-Derived Endophytic Fungus Paecilomyces variotii EN-291. Beilstein Journal of Organic Chemistry, 14, 2394-2395. https://doi.org/10.3762/bjoc.14.215 |
[28] | Shi, Z.-Z., Miao, F.-P., Fang, S.-T., et al. (2018) Trichorenins A-C, Algi-cidal Tetracyclic Metabolites from the Marine-Alga-Epiphytic Fungus Trichoderma virens Y13-3. Journal of Natural Products, 81, 1121-1124.
https://doi.org/10.1021/acs.jnatprod.8b00164 |
[29] | Shi, Z.-Z., Miao, F.-P., Fang, S.-T., et al. (2018) Trichocarotins A-H and Trichocadinin A, Nine Sesquiterpenes from the Marine-Alga-Epiphytic Fungus Trichoderma virens. Bioor-ganic Chemistry, 81, 319-325.
https://doi.org/10.1016/j.bioorg.2018.08.027 |
[30] | Chen, D., Zhang, P., Liu, T., et al. (2018) Insecticidal Activities of Chloramphenicol Derivatives Isolated from a Marine Alga-Derived Endophytic Fungus, Acremonium vitellinum, against the Cotton Bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Molecules, 23, 2995-3009. https://doi.org/10.3390/molecules23112995 |
[31] | Yang, S.-Q., Li, X.-M., Li, X., et al. (2018) Two New Diketo-morpholine Derivatives and a New Highly Conjugated Ergostane-Type Steroid from the Marine Algal-Derived Endo-phytic Fungus Aspergillus alabamensis EN-547. Marine Drugs, 16, 114-122. https://doi.org/10.3390/md16040114 |
[32] | Yang, S.-Q., Li, X.-M., Li, X., et al. (2018) New Citrinin Analogues Produced by Coculture of the Marine Algal-De- rived Endophytic Fungal Strains Aspergillus sydowii EN-534 and Peni-cillium citrinum EN-535. Phytochemistry Letters, 25, 191-195. https://doi.org/10.1016/j.phytol.2018.04.023 |
[33] | Kralj, A., Kehraus, S., Krick, A., et al. (2006) Arugosins G and H: Prenylated Polyketides from the Marine-Derived Fungus Emericella nidulans var. acristata. Journal of Natural Products, 69, 995-1000.
https://doi.org/10.1021/np050454f |
[34] | Krick, A., Kehraus, S., Gerh?user, C., et al. (2007) Potential Cancer Chemopreventive in Vitro Activities of Monomeric Xanthone Derivatives from the Marine Algicolous Fungus Mo-nodictys putredinis. Journal of Natural Products, 70, 353-360. https://doi.org/10.1021/np060505o |
[35] | Oh, D.-C., Kauffman, C., Jensen, P., et al. (2007) Induced Production of Emericellamides A and B from the Marine-Derived Fungus Emericella sp. in Competing Co-Culture. Journal of Natural Products, 70, 515-520.
https://doi.org/10.1021/np060381f |
[36] | Ji, N.-Y., Liu, X.-H., Miao, F.-P., et al. (2013) Aspeverin, a New Alkaloid from an Algicolous Strain of Aspergillus versicolor. Organic Letters, 15, 2327-2329. https://doi.org/10.1021/ol4009624 |
[37] | 孙坤来. 表观遗传修饰增加两株浒苔真菌的化学多样性研究[D]: [博士学位论文]. 青岛: 中国海洋大学, 2014. |
[38] | Sun, K., Zhu, G., Hao, J., et al. (2018) Chemical-Epigenetic Method to Enhance the Chemodiversity of the Marine Algicolous Fungus, Aspergillus terreus OUCMDZ-2739. Tetrahedron, 74, 83-87.
https://doi.org/10.1016/j.tet.2017.11.039 |
[39] | Sun, K., Zhu, G., Hao, J., et al. (2018) Corrigendum to “Chemi-cal-Epigenetic Method to Enhance the Chemodiversity of the Marine Algicolous Fungus, Aspergillus terreus OUCMDZ-2739”. Tetrahedron, 74, 6465-6466.
https://doi.org/10.1016/j.tet.2018.09.018 |
[40] | Li, X., Li, X.-M., Zhang, P., et al. (2015) A New Phenolic Enamide and a New Meroterpenoid from Marine Alga-Derived Endophytic Fungus Penicillium oxalicum EN-290. Journal of Asian Natural Products Research, 17, 1204-1212. https://doi.org/10.1080/10286020.2015.1117454 |
[41] | 陈正波. 两株浒苔来源微生物的次生代谢产物研究[D]: [硕士学位论文]. 青岛: 中国海洋大学, 2015. |