全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

温度响应性纳米胶束在脱缩醛/酮反应中的催化应用
Catalytic Application of Temperature Responsive Nanomicelles in Deacetalization Reaction

DOI: 10.12677/JOCR.2022.103008, PP. 79-89

Keywords: 温度响应性,纳米反应器,脱缩醛/酮,催化性能
Temperature Responsiveness
, Nanoreactor, Deacetalization, Catalytic Performance

Full-Text   Cite this paper   Add to My Lib

Abstract:

为制备在脱缩醛/酮反应中具有高催化效率且可多次利用的催化剂,首先以甲基丙烯酸N-琥珀酰亚胺酯(NMS)、聚乙二醇甲醚甲基丙烯酸酯(OEGMA)和甲基丙烯酸甲酯(MMA)为原料,通过可逆加成-断裂链转移(RAFT)聚合合成两亲嵌段聚合物P((NMS-co-OEGMA)-b-MMA),然后利用活化酯功能化策略引入β-丙氨酸,最后将所得功能性两亲嵌段共聚物在水中自组装形成羧基催化型纳米胶束。采用GPC、1H NMR、DLS、UV-Vis等手段表征聚合物和纳米胶束的结构与性能,采用GC-MS研究了催化剂的催化性能。结果表明:含羧基的两亲嵌段共聚物的低临界溶解温度(LCST)随着OEGMA和NMS聚合度比例的变化而变化,所得纳米胶束的粒径为95 nm左右,在水中具有良好的分散性。纳米胶束在用量为5 mol%、室温条件下催化脱缩醛反应,缩醛/酮在1 h生成醛/酮的产率可达到85%以上,使用之后的催化剂可通过加热离心沉淀的方法进行回收。
To prepare catalyst with high catalytic efficiency and recyclability in deacetalization reaction, block polymers P((NMS-co-OEGMA)-b-MMA) were firstly synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization using methacrylic acid N-hydroxysuccinimide ester (NMS), poly(ethylene glycol) methyl ether methacrylate (OEGMA) and methyl methacrylate MMA were used as the monomers. Next, β-alanine was introduced by an activated ester functionalization strategy. Finally, self-assembly of the resulting functionalized amphiphilic block copolymers in water afforded the carboxyl acid-containing nanomicelles. The structures of polymers and nanomicelles were characterized by means of GPC, 1H NMR, and DLS and UV-Vis. The recovery and catalytic performance of the catalysts were studied. The results showed that the lower critical solution temperature (LCST) of the carboxylic acid-containing amphiphilic block copolymers changed with the ratio of the polymerization degree of OEGMA and NMS, and the nanomicelles showed a particle size of 95 nm under LCST, showing good dispersibility in water. Nanomicelles catalyze the deacetalization reaction at room temperature at a dosage of 5 mol% catalyst, and the yield of aldehyde/ketone can reach more than 85% in 1 h. After use, the catalyst can be recovered by heating and centrifugal precipitation.

References

[1]  程栖桐, 王姗姗, 梁馨月, 等. 改性分子筛催化缩醛酮反应性能研究[J]. 精细石油化工, 2014, 31(4): 30-33.
[2]  高文秀, 吕杰琼, 谢晖, 等. 酸, 碱催化Knoevenagel缩合反应机理的研究[J]. 山东化工, 2021, 50(1): 105-107.
[3]  许文苑, 邹丽霞, 熊国宣, 孟丽娜. 固载杂多酸催化缩醛反应的研究[J]. 化学反应工程与工艺, 2003, 19(2): 160-163.
[4]  Cai, K., Tan, W.J., Zhao, N., and He, H.M.. (2020) Design and Assembly of a Hierarchically Micro- and Mesoporous MOF as a Highly Efficient Heterogeneous Catalyst for Knoevenagel Condensation Reaction. Crystal Growth & Design, 20, 4845-4851.
https://doi.org/10.1021/acs.cgd.0c00636
[5]  Lv, H.X., Zhang, Z.G., Fan, L.M., Gao, Y.P. and Zhang, X.T. (2022) A Nanocaged Cadmium-Organic Framework with High Catalytic Activity on the Chemical Fixation of CO2 and Deacetalization-Knoevenagel Condensation. Microporous and Mesoporous Materials, 335, Article ID: 111791.
https://doi.org/10.1016/j.micromeso.2022.111791
[6]  Anyaegbu, C.E., et al. (2022) Tertiary Amine-Bisquaternary Ammonium Functionalized Polyacrylonitrile Fiber for Catalytic Synthesis of Pyran-Annulated Heterocycles. Reactive and Functional Polymers, 172, Article ID: 105201.
https://doi.org/10.1016/j.reactfunctpolym.2022.105201
[7]  Mirjalili., B.F., Pourjavadi, A., Zolfigol, M.A. and Bamoniri, A. (2003) Silica Chloride/Wet SiO2 as a Novel Heterogeneous System for the Deprotection of Acetals under Mild Conditions. Phosphorus, Sulfur, and Silicon and the Related Elements, 178, 2667-2670.
https://doi.org/10.1080/714040981
[8]  Kalbasi, R.J., Rahmati, F. and Mazaheri, O. (2020) Overcoming Acid-Base Copolymer Neutralization using Mesoporous Carbon and Its Catalytic Activity in the Tandem Deacetalization-Knoevenagel Condensation Reaction. Research on Chemical Intermediates, 46, 3413-3430.
https://doi.org/10.1007/s11164-020-04153-4
[9]  Lee, L.-C., Lu, J., Weck, M. and Jones, C.W. (2016) Acid-Base Bifunctional Shell Cross-Linked Micelle Nanoreactor for One-Pot Tandem Reaction. ACS Catalysis, 6, 784-787.
https://doi.org/10.1021/acscatal.5b02538
[10]  Liu, W., Tian, G.Q., Yang, D.D., et al. (2019) Eterogeneous Catalysts Based on Built-in N-Heterocyclic Carbenes with High Removability, Recoverability and Reusability for Ring-Opening Polymerization of Cyclic Esters. Polymer Chemistry, 10, 1526-1536.
https://doi.org/10.1039/C9PY00111E
[11]  Talib, N.B., et al. (2016) Utilization of a Cost Effective Lapindo Mud Catalyst Derived from Eruption Waste for Transesterification of Waste Oils. Energy Conversion and Management, 108, 411-421.
https://doi.org/10.1016/j.enconman.2015.11.031
[12]  Marinkovi?, D.M., Avramovi?, J.M., et al. (2017) Synthesis and Characterization of Spherically-Shaped CaO/γ-Al2O3 Catalyst and Its Application in Biodiesel Production. Energy Conversion and Management, 144, 399-413.
https://doi.org/10.1016/j.enconman.2017.04.079
[13]  Feyzi, M., Hassankhani, A. and Rafiee, H.R. (2013) Preparation and Characterization of Cs/Al/Fe3O4 Nanocatalysts for Biodiesel Production. Energy Conversion and Management, 71, 62-68.
https://doi.org/10.1016/j.enconman.2013.03.022
[14]  彭志平, 程志毓, 漆刚. RAFT合成pH和温度响应的双亲水嵌段共聚物[J]. 精细化工, 2011, 28(6): 529-534.
[15]  Chen, T., Xu, Z.K., Zhou, L., et al. (2019) Highly Efficient Polymer-Based Nanoreactors for Selective Oxidation of Alcohols in Water. Molecular Catalysis, 474, 110422-110422.
[16]  徐振凯. 基于温敏聚合物制备负载TEMPO的纳米反应器及其催化应用[D]: [硕士学位论文]. 浙江: 浙江理工大学纺织化学与染整工程系, 2020.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133