|
肌肉减少症发生机制的研究进展
|
Abstract:
伴随着社会老龄化的来临,人们将更多目光投向了肌肉减少症。肌肉减少症是人口老龄化社会进展所必经的,主要临床表现为一种进行性和全身广泛性的骨骼肌疾病,以骨骼肌质量肌力下降和全身功能减退为主要特征,早期识别肌肉减少症对延缓老年衰弱有积极意义。目前我国对于肌肉减少症的研究处于探索阶段,本文将从肌肉减少症发生机制的部分新进展进行综述。
With the advent of the aging society, people pay more attention to sarcopenia. Sarcopenia is a pro-gressive and generalized skeletal muscle disease, which is characterized by the decline of skeletal muscle mass and muscle strength and general dysfunction. Early identification of sarcopenia is of positive significance for delaying aging frailty. At present, the research on sarcopenia in China is in the exploration stage. This paper will review some new advances in the pathogenesis of sarcopenia.
[1] | Lunenfeld, B. and Stratton, P. (2013) The Clinical Consequences of an Ageing World and Preventive Strategies. Best Practice & Research Clinical Obstetrics & Gynaecology, 27, 643-659. https://doi.org/10.1016/j.bpobgyn.2013.02.005 |
[2] | Kornicka, K., Sz?apka-Kosarzewska, J., ?mieszek, A. and Marycz, K. (2019) 5-Azacytydine and Resveratrol Reverse Senescence and Ageing of Adipose Stem Cells via Modula-tion of Mitochondrial Dynamics and Autophagy. Journal of Cellular and Molecular Medicine, 23, 237-259. https://doi.org/10.1111/jcmm.13914 |
[3] | Kitamura, A., Seino, S., Abe, T., Nofuji, Y., Yokoyama, Y., Amano, H., et al. (2021) Sarcopenia: Prevalence, Associated Factors, and the Risk of Mortality and Disability in Japanese Older Adults. Journal of Cachexia, Sarcopenia and Muscle, 12, 30-38. https://doi.org/10.1002/jcsm.12651 |
[4] | Yeung, S.S.Y., Reijnierse, E.-M., Pham, V.-K., Trappenburg, M.-C., Lim, W.-K., Meskers, C.G.M., et al. (2019) Sarcopenia and Its Association with Falls and Fractures in Older Adults: A Systematic Review and Meta-Analysis. Journal of Ca-chexia, Sarcopenia and Muscle, 10, 485-500. https://doi.org/10.1002/jcsm.12411 |
[5] | Almohaisen, N., Gittins, M., Todd, C., Sremanakova, J., Sowerbutts, A.-M., Aldossari, A., et al. (2022) Prevalence of Undernutrition, Frailty and Sarcopenia in Community-Dwelling People Aged 50 Years and Above: Systematic Review and Meta-Analysis. Nutrients, 14, Article No. 1537. https://doi.org/10.3390/nu14081537 |
[6] | Cruz-Jentoft, A.-J., Bahat, G., Bauer, J., Boirie, Y., Bruyère, O., Cederholm, T., et al. (2019) Sarcopenia: Revised European Consensus on Definition and Diagnosis. Age and Ageing, 48, 16-31. https://doi.org/10.1093/ageing/afy169 |
[7] | Schaap, L.-A., Koster, A. and Visser, M. (2013) Adiposity, Muscle Mass, and Muscle Strength in Relation to Functional Decline in Older Persons. Epidemiologic Re-views, 35, 51-65. https://doi.org/10.1093/epirev/mxs006 |
[8] | Bozzetti, F. (2017) Forcing the Vicious Circle: Sar-copenia Increases Toxicity, Decreases Response to Chemotherapy and Worsens with Chemotherapy. Annals of Oncology, 28, 2107-2118. https://doi.org/10.1093/annonc/mdx271 |
[9] | Wang, T. (2022) Searching for the Link between In-flammaging and Sarcopenia. Ageing Research Reviews, 77, Article ID: 101611. https://doi.org/10.1016/j.arr.2022.101611 |
[10] | Bollen, S.-E., Bass, J.-J., Fujita, S., Wilkinson, D., Hewison, M. and Atherton, P.J. (2022) The Vitamin D/Vitamin D Receptor (VDR) Axis in Muscle Atrophy and Sarcopenia. Cellular Signalling, 96, Article ID: 110355.
https://doi.org/10.1016/j.cellsig.2022.110355 |
[11] | McKee, A., Morley, J.-E., Matsumoto, A.-M. and Vinik, A. (2017) Sarcopenia: An Endocrine Disorder? Endocrine Practice, 23, 1140-1149. https://doi.org/10.4158/EP171795.RA |
[12] | Chen, L.-K., Woo, J., Assantachai, P., Auyeung, T.-W., Chou, M.-Y., Iijima, K., et al. (2020) Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. Journal of the American Medical Directors Association, 21, 300-307.E2. https://doi.org/10.1016/j.jamda.2019.12.012 |
[13] | Booth, F.-W., Roberts, C.-K. and Laye, M.J. (2012) Lack of Ex-ercise Is a Major Cause of Chronic Diseases. Comprehensive Physiology, 2, 1143-1211. https://doi.org/10.1002/cphy.c110025 |
[14] | Deschenes, M.-R., Flannery, R., Hawbaker, A., Patek, L. and Mifsud, M. (2022) Adaptive Remodeling of the Neuromuscular Junction with Aging. Cells, 11, Article No. 1150. https://doi.org/10.3390/cells11071150 |
[15] | Liu, C., Cheung, W.-H., Li, J., Chow, S.K.-H., Yu, J., Wong, S.-H., et al. (2021) Understanding the Gut Microbiota and Sarcopenia: A Systematic Review. Journal of Cachexia, Sarcopenia and Muscle, 12, 1393-1407.
https://doi.org/10.1002/jcsm.12784 |
[16] | Romani, M., Berger, M.-M. and D’Amelio, P. (2022) From the Bench to the Bedside: Branched Amino Acid and Micronutrient Strategies to Improve Mitochondrial Dysfunction Leading to Sar-copenia. Nutrients, 14, Article No. 483.
https://doi.org/10.3390/nu14030483 |
[17] | Watson, M.-D., Cross, B.-L. and Grosicki, G.J. (2021) Evidence for the Contribution of Gut Microbiota to Age-Related Anabolic Resistance. Nutrients, 13, Article No. 706. https://doi.org/10.3390/nu13020706 |
[18] | Zanni, F., Vescovini, R., Biasini, C., Fagnoni, F., Zanlari, L., Telera, A., et al. (2003) Marked Increase with Age of Type 1 Cytokines within Memory and Effector/Cytotoxic CD8+ T Cells in Humans: A Contribution to Understand the Relationship between Inflammation and Immunosenescence. Experimental Gerontology, 38, 981-987.
https://doi.org/10.1016/S0531-5565(03)00160-8 |
[19] | Santoro, A., Bientinesi, E. and Monti, D. (2021) Immunose-nescence and Inflammaging in the Aging Process: Age-Related Diseases or Longevity? Ageing Research Reviews, 71, Article ID: 101422.
https://doi.org/10.1016/j.arr.2021.101422 |
[20] | Barbé-Tuana, F., Funchal, G., Schmitz, C.R.R., Maurmann, R.-M. and Bauer, M.E. (2020) The Interplay between Immunosenescence and Age-Related Diseases. Seminars in Immuno-pathology, 42, 545-557.
https://doi.org/10.1007/s00281-020-00806-z |
[21] | Nelke, C., Dziewas, R., Minnerup, J., Meuth, S.-G. and Ruck, T. (2019) Skeletal Muscle as Potential Central Link between Sarcopenia and Immune Senescence. eBioMedicine, 49, 381-388. https://doi.org/10.1016/j.ebiom.2019.10.034 |
[22] | Chen, B. and Shan, T. (2019) The Role of Satellite and Other Functional Cell Types in Muscle Repair and Regeneration. Journal of Muscle Research and Cell Motility, 40, 1-8. https://doi.org/10.1007/s10974-019-09511-3 |
[23] | Huang, S.-W., Xu, T., Zhang, C.-T. and Zhou, H.L. (2020) Re-lationship of Peripheral Lymphocyte Subsets and Skeletal Muscle Mass Index in Sarcopenia: A Cross-Sectional Study. The Journal of Nutrition, Health & Aging, 24, 325-329.
https://doi.org/10.1007/s12603-020-1329-0 |
[24] | Zhang, J., Xiao, Z., Qu, C., Cui, W., Wang, X. and Du, J. (2014) CD8 T Cells Are Involved in Skeletal Muscle Regeneration through Facilitating MCP-1 Secretion and Gr1(High) Mac-rophage Infiltration. The Journal of Immunology, 193, 5149-5160. https://doi.org/10.4049/jimmunol.1303486 |
[25] | Holick, M.F. (2007) Vitamin D Deficiency. New England Journal of Medicine, 357, 266-281.
https://doi.org/10.1056/NEJMra070553 |
[26] | Orces, C.H. (2017) Prevalence of Clinically Relevant Muscle Weak-ness and Its Association with Vitamin D Status among Older Adults in Ecuador. Aging Clinical and Experimental Re-search, 29, 943-949.
https://doi.org/10.1007/s40520-016-0678-3 |
[27] | Bollen, S.-E. and Atherton, P.J. (2021) Myogenic, Genomic and Non-Genomic Influences of the Vitamin D Axis in Skeletal Muscle. Cell Biochemistry and Function, 39, 48-59. https://doi.org/10.1002/cbf.3595 |
[28] | Lecker, S.-H., Solomon, V., Mitch, W.-E. and Goldberg, A.L. (1999) Muscle Protein Breakdown and the Critical Role of the Ubiquitin-Proteasome Pathway in Normal and Disease States. The Jour-nal of Nutrition, 129, 227S-37S.
https://doi.org/10.1093/jn/129.1.227S |
[29] | Schnell, D.-M., Walton, R.-G., Vekaria, H.-J., Sullivan, P.-G., Bol-linger, L.-M., Peterson, C.-A., et al. (2019) Vitamin D Produces a Perilipin 2-Dependent Increase in Mitochondrial Function in C2C12 Myotubes. The Journal of Nutritional Biochemistry, 65, 83-92. https://doi.org/10.1016/j.jnutbio.2018.11.002 |
[30] | Das, A., Gopinath, S.-D. and Arimbasseri, G.A. (2022) Sys-temic Ablation of Vitamin D Receptor Leads to Skeletal Muscle Glycogen Storage Disorder in Mice. Journal of Cachexia, Sarcopenia and Muscle, 13, 467-480.
https://doi.org/10.1002/jcsm.12841 |
[31] | Chen, L., Yang, R., Qiao, W., Zhang, W., Chen, J., Mao, L., et al. (2019) 1,25-Dihydroxyvitamin D Exerts an Antiaging Role by Activation of Nrf2-Antioxidant Signaling and Inactivation of p16/p53-Senescence Signaling. Aging Cell, 18, Article ID: e12951. https://doi.org/10.1111/acel.12951 |
[32] | Solovyeva, E.-M., Ibebunjo, C., Utzinger, S., Eash, J.-K., Dunbar, A., Naumann, U., et al. (2021) New Insights into Molecular Changes in Skeletal Muscle Aging and Disease: Differential Alternative Splicing and Senescence. Mechanisms of Ageing and Development, 197, Article ID: 111510. https://doi.org/10.1016/j.mad.2021.111510 |
[33] | Franceschi, C., Bonafè, M., Valensin, S., Olivieri, F., De Luca, M., Ottaviani, E., et al. (2000) Inflamm-Aging. An Evolutionary Perspective on Immunosenescence. Annals of the New York Academy of Sciences, 908, 244-254.
https://doi.org/10.1111/j.1749-6632.2000.tb06651.x |
[34] | Schaap, L.-A., Pluijm, S.M.F., Deeg, D.J.H. and Visser, M. (2006) Inflammatory Markers and Loss of Muscle Mass (Sarcopenia) and Strength. The American Journal of Medi-cine, 119, 526.E9-526.E17.
https://doi.org/10.1016/j.amjmed.2005.10.049 |
[35] | Tiainen, K., Hurme, M., Hervonen, A., Luukkaala, T. and Jylh?, M. (2010) Inflammatory Markers and Physical Performance among Nonagenarians. The Journals of Gerontology A, 65, 658-663. https://doi.org/10.1093/gerona/glq056 |
[36] | Costamagna, D., Duelen, R., Penna, F., Neumann, D., Costelli, P. and Sampaolesi, M. (2020) Interleukin-4 Administration Improves Muscle Function, Adult Myogenesis, and Lifespan of Colon Carcinoma-Bearing Mice. Journal of Cachexia, Sarcopenia and Muscle, 11, 783-801. https://doi.org/10.1002/jcsm.12539 |
[37] | Pan, L., Xie, W., Fu, X., Lu, W., Jin, H., Lai, J., et al. (2021) Inflamma-tion and Sarcopenia: A Focus on Circulating Inflammatory Cytokines. Experimental Gerontology, 154, Article ID: 111544.
https://doi.org/10.1016/j.exger.2021.111544 |
[38] | Yalcin, A., Silay, K., Balik, A.-R., Avcio?lu, G. and Aydin, A.S. (2018) The Relationship between Plasma Interleukin-15 Levels and Sarcopenia in Outpatient Older People. Aging Clini-cal and Experimental Research, 30, 783-790.
https://doi.org/10.1007/s40520-017-0848-y |
[39] | Lin, S.-Y., Wang, Y.-Y., Chuang, Y.-H. and Chen, C.-J. (2016) Skeletal Muscle Proteolysis Is Associated with Sympathetic Activation and TNF-α-Ubiquitin-Proteasome Pathway in Liver Cirrhotic Rats. Journal of Gastroenterology and Hepatology, 31, 890-896. https://doi.org/10.1111/jgh.13159 |