全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

多模态MR技术在糖尿病心肌病的研究进展
Research Progress of Multimodal MR Technology in Diabetic Cardiomyopathy

DOI: 10.12677/ACM.2022.1291164, PP. 8082-8087

Keywords: 糖尿病,糖尿病心肌病,多模态CMR技术
Diabetes
, Diabetic Cardiomyopathy, Multimodal CMR Technology

Full-Text   Cite this paper   Add to My Lib

Abstract:

糖尿病心肌病是引起糖尿病患者心力衰竭的主要原因之一。早期诊断有助于在早期阶段正确识别疾病并实施适当的纠正治疗。心脏磁共振作为心肌病变无创诊断的“金标准”,具有多参数、多成像序列等特点。多模态CMR检查能够从不同角度定量对糖尿病患者心脏结构、功能及心肌组织特性进行全面评估,为病人的早期治疗及预后评估提供重要信息。
Diabetic cardiomyopathy is one of the main causes of heart failure in diabetic patients. Early diag-nosis helps to correctly identify diseases at an early stage and implement appropriate corrective treatment. Cardiac magnetic resonance, as the “gold standard” for noninvasive diagnosis of cardio-myopathy, has the characteristics of multiple parameters and multiple imaging sequences. Multi-modal CMR can quantitatively evaluate cardiac structure, function and myocardial tissue charac-teristics of diabetic patients from different angles, and provide important information for early treatment and prognosis evaluation of patients.

References

[1]  Voulgari, C., Papadogiannis, D. and Tentolouris, N. (2010) Diabetic Cardiomyopathy: From the Pathophysiology of the Cardiac Myocytes to Current Diagnosis and Management Strategies. Vascular Health and Risk Management, 6, 883-903.
https://doi.org/10.2147/VHRM.S11681
[2]  Sun, H., Saeedi, P., Karuranga, S., Pinkepank, M., Ogurtsova, K., Duncan, B.B., Stein, C., Basit, A., Chan, J.C.N., Mbanya, J.C., Pavkov, M.E., Ramachandaran, A., Wild, S.H., James, S., Herman, W.H., Zhang, P., Bommer, C., Kuo, S., Boyko, E.J. and Magliano, D.J. (2022) IDF Diabetes Atlas: Global, Regional and Country-Level Diabetes Prevalence Estimates for 2021 and Projections for 2045. Diabetes Research and Clinical Practice, 183, Article ID: 109119.
https://doi.org/10.1016/j.diabres.2021.109119
[3]  Bertoni, A.G., Hundley, W.G., Massing, M.W., Bonds, D.E., Burke, G.L. and Goff, D.C. (2004) Heart Failure Prevalence, Incidence, and Mortality in the Elderly with Diabetes. Dia-betes Care, 27, 699-703.
https://doi.org/10.2337/diacare.27.3.699
[4]  Leiner, T., Bogaert, J., Friedrich, M.G., Mohiaddin, R., Muthurangu, V., Myerson, S., et al. (2020) SCMR Position Paper (2020) on Clinical Indications for Cardiovascular Magnetic Reso-nance. Journal of Cardiovascular Magnetic Resonance, 22, Article No. 76.
https://doi.org/10.1186/s12968-020-00682-4
[5]  Vasquez, M. and Nagel, E. (2019) Clinical Indications for Car-diovascular Magnetic Resonance. Heart (British Cardiac Society), 105, 1755-1762.
https://doi.org/10.1136/heartjnl-2018-312971
[6]  Khan, S., Ahmad, S.S. and Kamal, M.A. (2021) Diabetic Car-diomyopathy: From Mechanism to Management in a Nutshell. Endocrine, Metabolic & Immune Disorders—Drug Tar-gets, 21, 268-281.
https://doi.org/10.2174/1871530320666200731174724
[7]  Mordi, I.R. (2019) Non-Invasive Imaging in Diabetic Cardiomyopathy. Journal of Cardiovascular Development and Disease, 6, Article No. 18.
https://doi.org/10.3390/jcdd6020018
[8]  Dean, J., Cruz, S.D., Mehta, P.K., et al. (2015) Coronary Microvascular Dysfunction: Sex-Specific Risk, Diagnosis, and Therapy. Nature Reviews Cardiology, 12, 406-414.
https://doi.org/10.1038/nrcardio.2015.72
[9]  Jensen, M.T., Fung, K., Aung, N., Sanghvi, M.M., et al. (2019) Changes in Cardiac Morphology and Function in Individuals with Diabetes Mellitus: The UK Biobank Cardiovascular Magnetic Resonance Substudy. Circulation: Cardiovascular Imaging, 12, e009476.
https://doi.org/10.1161/CIRCIMAGING.119.009476
[10]  Gao, Y., Yang, Z., Ren, Y., et al. (2019) Evaluation of Myocardial Fibrosis in Diabetes with Cardiac Magnetic Resonance T1-Mapping: Correlation with the High-Level Hemo-globin A1c. Diabetes Research and Clinical Practice, 150, 72-80.
https://doi.org/10.1016/j.diabres.2019.03.004
[11]  Patscheider, H., Lorbeer, R., Auweter, S., et al. (2018) Subclin-ical Changes in MRI-Determined Right Ventricular Volumes and Function in Subjects with Prediabetes and Diabetes. European Radiology, 28, 3105-3113.
https://doi.org/10.1007/s00330-017-5185-1
[12]  Shenoy, C., Romano, S., Hughes, A., et al. (2020) Cardiac Mag-netic Resonance Feature Tracking Global Longitudinal Strain and Prognosis after Heart Transplantation. JACC: Cardio-vascular Imaging, 13, 1934-1942.
https://doi.org/10.1016/j.jcmg.2020.04.004
[13]  Maceira, A.M., Guardiola, S., Ripoll, C., Cosin-Sales, J., Belloch, V. and Salazar, J. (2020) Detection of Subclinical Myocardial Dysfunction in Cocaine Addicts with Feature Tracking Cardiovascular Magnetic Resonance. Journal of Cardiovascular Magnetic Resonance, 22, 70.
https://doi.org/10.1186/s12968-020-00663-7
[14]  Morris, D.A., Otani, K., Bekfani, T., Takigiku, K., Izumi, C., Yuda, S., et al. (2014) Multidirectional Global Left Ventricular Systolic Function in Normal Subjects and Patients with Hypertension: Multicenter Evaluation. Journal of the American Society of Echocardiography, 27, 493-500.
https://doi.org/10.1016/j.echo.2014.01.017
[15]  Halliday, B.P., Senior, R. and Pennell, D.J. (2021) Assessing Left Ventricular Systolic Function: From Ejection Fraction to Strain Analysis. European Heart Journal, 42, 789-797.
https://doi.org/10.1093/eurheartj/ehaa587
[16]  Jiang, L., Wang, J., Liu, X., et al. (2020) The Combined Effects of Cardiac Geometry, Microcirculation, and Tissue Characteristics on Cardiac Systolic and Diastolic Function in Subclinical Diabetes Mellitus-Related Cardiomyopathy. International Journal of Cardiology, 320, 112-118.
https://doi.org/10.1016/j.ijcard.2020.07.013
[17]  Xie, L.J., Dong, Z.H., Yang, Z.G., Deng, M.Y., Gao, Y., Jiang, L., Hu, B.Y., Liu, X., Ren, Y., Xia, C.C., Li, Z.L., Zhang, H.P., Zhou, X.Y. and Guo, Y.K. (2020) Assessment of Left Ventricular Deformation in Patients with Type 2 Diabetes Mellitus by Cardiac Magnetic Resonance Tissue Tracking. Scientific Reports, 10, Article No. 13126.
https://doi.org/10.1038/s41598-020-69977-x
[18]  Hu, B.Y., Wang, J. and Yang, Z.G. (2019) Cardiac Magnetic Resonance Feature Tracking for Quantifying Right Ventricular Deformation in Type 2 Diabetes Mellitus Patients. Scien-tific Reports, 9, Article No. 11148.
https://doi.org/10.1038/s41598-019-46755-y
[19]  何健, 赵世华, 陆敏杰. 心脏磁共振特征追踪技术及其研究进展[J]. 磁共振成像, 2020, 11(6): 469-473.
[20]  万俊义, 赵世华. 心脏磁共振钆对比剂延迟强化的临床意义及判断预后的价值[J]. 中国医学影像技术, 2012, 28(8): 1600-1603.
[21]  Kwong, R.Y., et al. (2008) Incidence and Prognostic Implication of Unrecognized Myocardial Scar Characterized by Cardiac Magnetic Resonance in Diabetic Pa-tients without Clinical Evidence of Myocardial Infarction. Circulation, 118, 1011-1020.
https://doi.org/10.1161/CIRCULATIONAHA.107.727826
[22]  Tahir, E., Starekova, J., Muellerleile, K., von Stritzky, A., Munch, J., Avanesov, M., et al. (2018) Myocardial Fibrosis in Competitive Triathletes Detected by Con-trast-Enhanced CMR Correlates with Exercise-Induced Hypertension and Competition History. JACC: Cardiovascular Imaging, 11, 1260-1270.
https://doi.org/10.1016/j.jcmg.2017.09.016
[23]  Bojer, A.S., S?rensen, M.H., Vejlstrup, N., Goetze, J.P., G?de, P. and Madsen, P.L. (2020) Distinct Non-Ischemic Myocardial Late Gadolinium Enhancement Lesions in Patients with Type 2 Diabetes. Cardiovascular Diabetology, 19, 184.
https://doi.org/10.1186/s12933-020-01160-y
[24]  Storz, C., Hetterich, H., Lorbeer, R., Heber, S.D., Schafnitzel, A., Patscheider, H., et al. (2018) Myocardial Tissue Characterization by Contrast-Enhanced Cardiac Magnetic Resonance Imaging in Subjects with Prediabetes, Diabetes, and Normal Controls with Preserved Ejection Fraction from the General Population. European Heart Journal—Cardiovascular Imaging, 19, 701-708.
https://doi.org/10.1093/ehjci/jex190
[25]  陆敏杰, 赵世华. 我国心血管磁共振成像三十年发展历程[J]. 磁共振成像, 2019, 10(10): 727-731.
[26]  Bull, S., White, S.K., Piechnik, S.K., et al. (2013) Human Non-Contrast T1 Values and Correlation with Histology in Diffuse Fibrosis. Heart, 99, 932-937.
https://doi.org/10.1136/heartjnl-2012-303052
[27]  Puntmann, V.O., Voigt, T., Chen, Z., et al. (2013) Native T1 Mapping in Differentiation of Normal Myocardium from Diffuse Disease in Hypertrophic and Dilated Cardiomyopathy. JACC: Cardiovascular Imaging, 6, 475-484.
https://doi.org/10.1016/j.jcmg.2012.08.019
[28]  Paul, D., Su, R., Romain, M., et al. (2017) Feature Selection for Outcome Prediction in Oesophageal Cancer Using Genetic Algorithm and Random Forest Classifier. Computerized Medical Imaging and Graphics, 60, 42-49.
https://doi.org/10.1016/j.compmedimag.2016.12.002
[29]  Kellman, P. and Hansen, M.S. (2014) T1-Mapping in the Heart: Accuracy and Precision. Journal of Cardiovascular Magnetic Resonance, 16, Article No. 2.
https://doi.org/10.1186/1532-429X-16-2
[30]  Tadic, M., Cuspidi, C., Calicchio, F., et al. (2020) Diabetic Cardio-myopathy: How Can Cardiac Magnetic Resonance Help. Acta Diabetologica, 57, 1027-1034.
https://doi.org/10.1007/s00592-020-01528-2
[31]  Cao, Y., Zeng, W., Cui, Y., Kong, X., Wang, M., Yu, J., Zhang, S., Song, J., Yan, X., Greiser, A., et al. (2018) Increased Myocardial Extracellular Volume Assessed by Cardiovascular Magnetic Resonance T1 Mapping and Its Determinants in Type 2 Diabetes Mellitus Patients with Normal Myocardial Systolic Strain. Cardiovascular Diabetology, 17, 7.
https://doi.org/10.1186/s12933-017-0651-2
[32]  Khan, M.A., Yang, E.Y., Nguyen, D.T., et al. (2020) Examining the Relationship and Prognostic Implication of Diabetic Status and Extracellular Matrix Expansion by Cardiac Magnetic Resonance. Circulation: Cardiovascular Imaging, 13, e011000.
[33]  Cheng, A.S., Pegg, T.J., Karamitsos, T.D., Searle, N., Jerosch-Herold, M., Choudhury, R.P., et al. (2007) Cardiovascular Magnetic Resonance Perfusion Imaging at 3-Tesla for the Detection of Coronary Artery Disease: A Comparison with 1.5 Tesla. JACC: Journal of the American College of Cardiology, 49, 2440-2449.
https://doi.org/10.1016/j.jacc.2007.03.028
[34]  Jerosch-Herold, M. (2010) Quantification of Myocardial Perfusion by Cardiovascular Magnetic Resonance. Journal of Cardiovascular Magnetic Resonance, 12, Article No. 57.
https://doi.org/10.1186/1532-429X-12-57
[35]  Liu, X., Yang, Z.G., Gao, Y., et al. (2018) Left Ventricular Sub-clinical Myocardial Dysfunction in Uncomplicated Type 2 Diabetes Mellitus Is Associated with Impaired Myocardial Perfusion: A Contrast-Enhanced Cardiovascular Magnetic Resonance Study. Cardiovascular Diabetology, 17, Article No. 139.
https://doi.org/10.1186/s12933-018-0782-0
[36]  Murthy, V.L., Naya, M. and Foster, C.R. (2011) Improved Car-diac Risk Assessment with Noninvasive Measures of Coronary Flow Reserve. Circulation, 124, 2215-2224.
https://doi.org/10.1161/CIRCULATIONAHA.111.050427

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133