全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

BP神经网络在我国二手车销量预测中的应用
Application of BP Neural Network in the Prediction of Used-Car Sales in China

DOI: 10.12677/SA.2022.114106, PP. 1029-1043

Keywords: 二手车,BP神经网络,预测,灰色关联度分析
Used-Car
, BP Neural Network, Prediction, Grey Correlation Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着我国经济的发展,汽车行业得到蓬勃发展。本文基于2001年至2021年我国二手车销量,分析了影响二手车销量的8个因素的相关性,通过灰色关联法表明这些因素之间的相关性高,选择其中关联度高于0.6的7个输入指标,确定二手车每年销售量为输出指标,建立BP神经网络模型。根据模型结果可知,三个数据测试集的确定系数均超过90%,接近1。训练过程的预测值与真实值描点图几乎一致。这表明模型的预测误差小,精度高。测试数据集与真实数据的相对误差也很小,证明基于BP神经网络模型的二手车年销售量预测是合理的。也证实了与传统方法回归分析法相比,机器学习的预测精度更高。
With the development of my country’s economy, the automobile industry has developed vigorously. Based on the sales of used-cars in my country from 2001 to 2021, we analyze the correlation of 8 factors that affect the sales of used-cars in this paper. It is shown that the correlation between these factors is high by the gray correlation method. We select 7 input indicators with a correlation degree higher than 0.6 and estimate the annual sales volume of used-cars as the output indicators to establish a BP neural network model. According to the model results, the determination coefficients of the three data test sets are all over 90%, close to 1. The predicted values of the training process are almost identical to the ground truth plots, which shows that the prediction error of the model is small and the accuracy is high. The relative error between the test data set and the real data is also small, which proves that the prediction of the annual sales volume of used cars based on the BP neural network model is reasonable. It is also confirmed that the prediction accuracy of machine learning is higher than that of the traditional method regression analysis.

References

[1]  我国全面取消二手车限迁政策[EB/OL]. http://www.gov.cn/xinwen/2018-03/05/ content_5271005.htm, 2018-03-05.
[2]  商务部、公安部、税务总局联合出台便利二手车异地交易登记新举措[EB/OL]. http://www.gov.cn/xinwen/2021-04/20/ content_5600768.htm, 2021-04-20.
[3]  再现政策利好, 二手车行业迎来发展新机遇[EB/OL]. https://baijiahao.baidu.com/s?id=1698236720903458416&wfr=spider&for=pc, 2021-04-28.
[4]  2022年中国二手车行业发展前景预测分析[EB/OL]. https://www.askci.com/news/chanye/20220110/1804491721152.shtml, 2022-01-10.
[5]  Wang, F.-K. and Chang, K.-K. (2011) Using Adaptive Network-Based Fuzzy Inference System to Forecast Automobile Sales. Expert Systems with Applications, 38, 10587-10593.
https://doi.org/10.1016/j.eswa.2011.02.100
[6]  Hulsmann, M., Borscheid, D., Friedrich, C.M. and Reith, D. (2011) General Sales Forecast Models for Automobile Markets Based on Time Series Analysis and Data Mining Techniques. Industrial Conference on Data Mining, New York, 30 August-3 September 2011, 255-269.
https://doi.org/10.1007/978-3-642-23184-1_20
[7]  Monburinon, N., Chertchom, P., Kaewkiriya, T., Rungpheung, S., Buya, S. and Boonpou, P. (2018) Prediction of Prices for Used Car by Using Regression Models. 5th International Conference on Business and Industrial Research, Bangkok, May 2018, 17-18.
[8]  Puteri, C.K. and Safitri, L.N. (2020) Analysis of Linear Regression on Used Car Sales in Indonesia. Journal of Physics: Conference Series, 1469, Article ID: 012143.
https://doi.org/10.1088/1742-6596/1469/1/012143
[9]  陈欢. 灰色理论在汽车销售预测和投资中的应用研究[D]: [硕士学位论文]. 合肥: 合肥大学, 2008.
[10]  李任龙. 基于灰色理论的二手车市场发展研究[D]: [硕士学位论文]. 西安: 长安大学, 2015.
[11]  宋福君. 我国汽车产量的分析与预测研究[D]: [硕士学位论文]. 沈阳: 东北大学, 2016.
[12]  王书鹏, 迮恒鹏, 王涛, 黄素珍, 刘桂兰. 机器学习在汽车销量预测中的应用[J]. 中阿科技论坛, 2019(2): 22-36.
[13]  桂思思, 孙伟, 徐晓锋. 基于ARIMA与线性回归组合模型的汽车销量预测分析[J]. 计算机与数字工程, 2021, 49(8): 1719-1722.
[14]  危高潮. 我国汽车销量主要影响因素的分析[J]. 西安财经学院学报, 2009, 22(6): 88-92.
[15]  赵颖. 基于回归分析的我国汽车销量预测模型[D]: [硕士学位论文]. 武汉: 华中师范大学, 2014.
[16]  杨庆斗. 基于BP神经网络的长城汽车销量预测研究[D]: [硕士学位论文]. 天津: 天津财经大学, 2020.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133