|
直接甲醇燃料电池阳极Pt基催化剂研究进展
|
Abstract:
直接甲醇燃料电池(DMFCs)由于其高效、安全便捷、无环境污染等优点,有望成为替代化石能源的高效能量转化装置。Pt由于具有优异的物理化学特性,使得其成为DMFCs最优异的阳极催化剂之一,然而由于其价格高且易被毒化等原因,在很大程度上限制了DMFCs的发展。因此,为了更好地推动DMFCs商业化发展,迫切需要开发出一种新型的阳极催化剂。基于此,如何开发出一种高活性和高稳定性的Pt基催化剂成为当前DMFCs领域研究的热点之一。本文首先阐述了DMFCs反应机理,其次详细讨论了Pt基二元合金催化剂、三元合金催化剂和高熵合金催化剂的研究进展,并总结了不同因素对甲醇氧化反应催化性能的影响,最后对甲醇燃料电池Pt基催化剂的未来发展趋势进行了展望。
As an efficient energy conversion device, direct methanol fuel cells (DMFCs) are expected to replace fossil energy because of their high efficiency, safety and convenience, non-environmental pollution, etc. Platinum (Pt) is one of the most excellent anode catalysts for DMFCs due to its excel-lent physical and chemical properties. However, the development of DMFCs has been limited due to their high price and easily suffered from CO poisoning. Therefore, in order to promote the commer-cial development of DMFCs, it is urgent to develop a new type of anode catalyst. Based on this guid-ance, how to develop a Pt-based catalyst with high activity and stability has become one of the hot topics in DMFCs. This work first focuses on the reaction mechanism of methanol oxidation reaction (MOR). Next, the research progress of Pt-based-binary alloy catalysts, ternary alloy catalysts and high entropy alloy catalysts will be discussed in detail. Finally, we will summarize the influence of different factors on MOR performance, and the future development of Pt-based catalysts trend will be prospected.
[1] | Lewis, N.S. and Nocera, D.G. (2006) Powering the Planet: Chemical Challenges in Solar Energy Utilization. Proceed-ings of the National Academy of Sciences of the United States of America, 103, 15729-15735.
https://doi.org/10.1073/pnas.0603395103 |
[2] | Yi, B.L., Shao, Z.G., Li, Y.K., et al. (2014) Triblock Polymer Me-diated Synthesis of Ir-Sn Oxide Electrocatalysts for Oxygen Evolution Reaction. Journal of Power Sources, 249, 175-184. https://doi.org/10.1016/j.jpowsour.2013.10.088 |
[3] | Chen, S.L., Zhou, Y.Q., Hu, X.H., et al. (2012) Three-Dimensional Ordered Macroporous IrO2 as Electrocatalyst for Oxygen Evolution Reaction in Acidic Medium. Journal of Materials Chemistry, 22, 6010-6016.
https://doi.org/10.1039/c2jm16506f |
[4] | Oezaslan, M., Strasser, P. and Reier, T. (2012) Electrocatalytic Oxygen Evolution Reaction (OER) on Ru, Ir, and Pt Catalysts: A Comparative Study of Nanoparticles and Bulk Materials. ACS Catalysis, 2, 1765-1772.
https://doi.org/10.1021/cs3003098 |
[5] | Yu, S.H., Jiang, J., Zheng, Y.R., et al. (2013) Nickel/Nickel(II) Oxide Nanoparticles Anchored onto Cobalt(IV) Diselenide Nanobelts for the Electrochemical Production of Hydrogen. An-gewandte Chemie International Edition, 52, 8546-8550. https://doi.org/10.1002/anie.201303495 |
[6] | Farha, O.K. and Hupp, J.T. (2010) Rational Design, Synthesis, Purification, and Activation of Metal-Organic Framework Materials. Accounts of Chemical Research, 43, 1166-1175. https://doi.org/10.1021/ar1000617 |
[7] | 王娟. 多级微纳结构Ni/Co基电催化剂的制备及氢能转换中的应用[D]: [博士学位论文]. 北京: 北京化工大学, 2015. |
[8] | 成巍. ZIF-67、ZIF-8衍生纳米材料的合成及其电化学性能研究[D]: [博士学位论文]. 哈尔滨: 吉林大学, 2020. |
[9] | Xu, G., Wang, G.E., Kumar, P.N., et al. (2019) Tunable Electrical Conductivity of a New 3D MOFs: Cu-TATAB. Inorganic Chemistry Communications, 105, 119-124. https://doi.org/10.1016/j.inoche.2019.04.037 |
[10] | Zhang, L., Wu, Y., Yu, Y., et al. (2020) Assembled 3D MOF on 2D Nanosheets for Self-Boosting Catalytic Synthesis of N-Doped Carbon Nanotube Encapsulated Metallic Co Electrocatalysts for Overall Water Splitting. Applied Catalysis B, 271, Article ID: 118939. https://doi.org/10.1016/j.apcatb.2020.118939 |
[11] | Alonso-Vante, N., Ma, J.W., Zhang, R.Y., et al. (2022) Highly Active Oxygen Evolution Reaction Electrocatalyst Based on Defective-CeO2-x Decorated MOF(Ni/Fe). Electro-chimica Acta, 403, Article ID: 139630.
https://doi.org/10.1016/j.electacta.2021.139630 |
[12] | Dai, H.J., Regier, T., Wang, J., et al. (2011) Co3O4 Nanocrys-tals on Graphene as a Synergistic Catalyst for Oxygen Reduction Reaction. Nature Materials, 10, 780-786. https://doi.org/10.1038/nmat3087 |
[13] | Yang, Y., Du, Y., Wang, X., et al. (2018) MoS2/TiO2 Heterostructures as Nonmetal Plasmonic Photocatalysts for Highly Efficient Hydrogen Evolution. Energy & Environmental Science, 11, 106-114.
https://doi.org/10.1039/C7EE02464A |
[14] | Duan, X., Evans, D.G., Wei, M., et al. (2013) A Hierarchical Hetero-structure Based on Pd Nanoparticles/Layered Double Hydroxide Nanowalls for Enhanced Ethanol Electrooxidation. Journal of Materials Chemistry A, 1, 5840-5846.
https://doi.org/10.1039/c3ta10588a |
[15] | Gogotsi, Y., Wang, G.X., Billinge, S.J.L., et al. (2019) Two-Dimensional Arrays of Transition Metal Nitride Nanocrystals. Advanced Materials, 31, Article ID: 1902393. https://doi.org/10.1002/adma.201902393 |
[16] | Gan, Q.M., He, H.N., Zhao, K.M., He, Z. and Liu, S.Q. (2018) Morphology-Dependent Electrochemical Performance of Ni-1,3,5-Benzenetricarboxylate Metal-Organic Frameworks as an Anode Material for Li-Ion Batteries. Journal of Colloid and Interface Science, 530, 127-136. https://doi.org/10.1016/j.jcis.2018.06.057 |
[17] | Yang, J.L., Hou, H., Zhang, J.F., et al. (2019) Ultrathin NiCo-MOF Nanosheets for High-Performance Supercapacitor Electrodes. ACS Applied Energy Materials, 2, 2063-2071. https://doi.org/10.1021/acsaem.8b02128 |
[18] | Zhang, H., Zhao, Y.L., Xu, H., et al. (2015) Ultrathin 2D Met-al-Organic Framework Nanosheets. Advanced Materials, 27, 7372-7378. https://doi.org/10.1002/adma.201503648 |
[19] | Zhang, H., Ma, Q.L., Huang, Z.Q., et al. (2018) Two-Dimensional Metal-Organic Framework Nanosheets: Synthesis and Applications. Chemical Society Reviews, 47, 6267-6295. https://doi.org/10.1039/C8CS00268A |
[20] | Zhang, R.F., Zhan, C.H., Shi, X.F., et al. (2020) Two-Dimensional Metal-Organic Framework Nanosheets: Synthetic Methodologies and Electrocatalytic Applications. Journal of Materials Chemistry A, 8, 15271-15301.
https://doi.org/10.1039/D0TA00468E |
[21] | Wu, P.Y., Sun, S.T., Wu, B.H., et al. (2020) Interfacially Stable MOF Nanosheet Membrane with Tailored Nanochannels for Ultrafast and Thermo-Responsive Nanofiltration. Nano Research, 13, 2973-2978.
https://doi.org/10.1007/s12274-020-2959-6 |
[22] | Zheng, M. and Katherine, A.M. (2020) Two-Dimensional D-π Conjugated Metal-Organic Framework Based on Hexahydroxytrinaphthylene. Nano Research, 14, 369-375. https://doi.org/10.1007/s12274-020-2874-x |
[23] | He, Z., Su, Y.K., Ye, G.Y., et al. (2020) Two-Dimensional Met-al-Organic Frameworks and Their Derivatives for Electrochemical Energy Storage and Electrocatalysis. Nanoscale Ad-vances, 2, 536-562.
https://doi.org/10.1039/C9NA00719A |
[24] | Peng, B.H., Liu, Z.Y., Yu, F., et al. (2021) Directly Application of Bimetallic 2D-MOF for Advanced Electrocatalytic Oxygen Evolution. International Journal of Hydrogen Energy, 46, 416-424.
https://doi.org/10.1016/j.ijhydene.2020.09.182 |
[25] | Zhou, J.H., Sun, W.F., Xu, Y., et al. (2022) Hierarchical Ni3S2@2D Co MOF Nanosheets as Efficient Hetero-Electrocatalyst for Hydrogen Evolution Reaction in Alkaline Solu-tion. Fuel Processing Technology, 229, Article ID: 107174. https://doi.org/10.1016/j.fuproc.2022.107174 |
[26] | Yi, H.B., Huo, J., Liu, Q.Q., et al. (2021) Building CoP/Co-MOF Heterostructure in 2D Nanosheets for Improving Electro-catalytic Hydrogen Evolution over a Wide pH Range. Journal of Electroanalytical Chemistry, 895, Article ID: 115514. https://doi.org/10.1016/j.jelechem.2021.115514 |
[27] | Xu, Q., Maeda, Y. and Li, P.Z. (2011) Top-Down Fabrication of Crystalline Metal-Organic Framework Nanosheets. Chemical Communications, 47, 8436-8438. https://doi.org/10.1039/c1cc12510a |
[28] | Zamora, F., Gómez-Herrero, J., Delgado, S., et al. (2010) Single Layers of a Multifunctional Laminar Cu(I,II) Coordination Polymer. Chemical Communications, 46, 3262-3264. https://doi.org/10.1039/b919647a |
[29] | Moorthy, J.N., Savitha, G., Mukhopadhyay, A., et al. (2017) Orthogonal Self-Assembly of a Trigonal Triptycene Triacid: Signaling of Exfoliation of Porous 2D Metal-Organic Layers by Fluo-rescence and Selective CO2 Capture by the Hydrogen-Bonded MOF. Journal of Materials Chemistry A, 5, 5402-5412. https://doi.org/10.1039/C6TA11110F |
[30] | Song, W.J. (2017) Intracellular DNA and MicroRNA Sensing Based on Metal-Organic Framework Nanosheets with Enzyme-Free Signal Amplification. Talanta, 170, 74-80. https://doi.org/10.1016/j.talanta.2017.02.040 |
[31] | Zhou, H.C., Xu, H.X., Jiang, H.L., et al. (2017) Controlled In-tercalation and Chemical Exfoliation of Layered Metal-Organic Frameworks Using a Chemically Labile Intercalating Agent. Journal of the American Chemical Society, 139, 9136-9139. https://doi.org/10.1021/jacs.7b04829 |
[32] | Xia, X.H., Ding, Y., Wang, K., et al. (2017) Lanthanide-Based Metal-Organic Framework Nanosheets with Unique Fluores-cence Quenching Properties for Two-Color Intracellular Adenosine Imaging in Living Cells. NPG Asia Materials, 9, e354. https://doi.org/10.1038/am.2017.7 |
[33] | Zhao, D., Jiang, J.W., Kang, Z.X., et al. (2017) Reversed Ther-mo-Switchable Molecular Sieving Membranes Composed of Two-Dimensional Metal-Organic Nanosheets for Gas Sep-aration. Nature Communications, 8, Article No. 14460. https://doi.org/10.1038/ncomms14460 |
[34] | Coronado, E., Clemente-León, M., Ma?as-Valero, S., et al. (2015) Graphene Related Magnetic Materials: Micromechanical Exfoliation of 2D Layered Magnets based on Bimetallic Anilate Complexes with Inserted [FeIII(acac2-trien)]+ and [FeIII(sal2-trien)]+ Molecules. Chemical Science, 6, 4665-4673. https://doi.org/10.1039/C5SC00957J |
[35] | Lang, J.P., Braunstein, P., Wang, H.F., et al. (2019) Large-Scale, Bottom-Up Synthesis of Binary Metal-Organic Framework Nanosheets for Effi-cient Water Oxidation. Angewandte Chemie International Edition, 58, 7051-7056.
https://doi.org/10.1002/anie.201902588 |
[36] | Pang, H., Xue, H.G., Li, Q., et al. (2018) Ultrathin Nanosheet-Assembled [Ni3(OH)2(PTA)2(H2O)4]?2H2O Hierarchical Flowers for High-Performance Electrocatalysis of Glucose Oxidation Reactions. Nanocale, 10, 13270-13276.
https://doi.org/10.1039/C8NR02932F |
[37] | Zhang, H., Wu, X.J., Zhang, Z.C., et al. (2016) In Situ Synthesis of Metal Sulfide Nanoparticles Based on 2D Metal-Organic Framework Nanosheets. Small, 12, 4669-4674. https://doi.org/10.1002/smll.201600976 |
[38] | Zhang, H., Tang, C.L., Zhang, Z.C., et al. (2016) Synthesis of Two-Dimensional CoS1.097/Nitrogen-Doped Carbon Nanocomposites Using Metal-Organic Framework Nanosheets as Precursors for Supercapacitor Application. Journal of the American Chemical Society, 138, 6924-6927. https://doi.org/10.1021/jacs.6b02540 |
[39] | Zhang, H., Zong, Y., Chen, B., et al. (2017) Growth of Au Nanoparti-cles on 2D Metalloporphyrinic Metal-Organic Framework Nanosheets Used as Biomimetic Catalysts for Cascade Reac-tions. Advanced Materials, 29, Article ID: 1700102. https://doi.org/10.1002/adma.201700102 |
[40] | Zhang, H., Ying, Y.B., Zhao, W., et al. (2016) Bioinspired Design of Ultrathin 2D Bimetallic Metal-Organic-Framework Nanosheets Used as Biomimetic Enzymes. Advanced Materials, 28, 4149-4155.
https://doi.org/10.1002/adma.201600108 |
[41] | Makiura, R. and Konovalov, O. (2013) Interfacial Growth of Large-Area Single-Layer Metal-Organic Framework Nanosheets. Scientific Reports, 3, Article No. 2506. https://doi.org/10.1038/srep02506 |
[42] | Tang, Z.Y., Zhao, H.J., Liu, S.Q., et al. (2016) Ultrathin Metal-Organic Framework Nanosheets for Electrocatalytic Oxygen Evolution. Nature Energy, 1, Article No. 16184. https://doi.org/10.1038/nenergy.2016.184 |
[43] | Ajayan, P.M., Ye, M.X., Shen, J.F., et al. (2019) Sublima-tion-Vapor Phase Pseudomorphic Transformation of Template-Directed MOFs for Efficient Oxygen Evolution Reaction. Advanced Functional Materials, 29, Article ID: 1903875.
https://doi.org/10.1002/adfm.201903875 |
[44] | Yao, Y.D., Cheng, X.W., Zheng, D.C., et al. (2019) Constructing a Highly Oriented Layered MOF Nanoarray from a Layered Double Hydroxide for Efficient and Long-Lasting Alkaline Water Oxidation Electrocatalysis. Journal of Materials Chemistry A, 7, 8771-8776. https://doi.org/10.1039/C9TA00819E |
[45] | Lin, Y.Q., Yuan, B.B., Wang, C., et al. (2018) NiFe-Based Met-al-Organic Framework Nanosheets Directly Supported on Nickel Foam Acting as Robust Electrodes for Electrochemical Oxygen Evolution Reaction. Advanced Energy Materials, 8, Article ID: 1800584. https://doi.org/10.1002/aenm.201800584 |
[46] | Marinescu, S.C., Mecklenburg, M.H., Yoo, J.W., et al. (2015) Two-Dimensional Metal-Organic Surfaces for Efficient Hydrogen Evolution from Water. Journal of the American Chemical Society, 137, 118-121.
https://doi.org/10.1021/ja5116937 |
[47] | Feng, X.L., Zhang, J., Zhu, X., et al. (2015) Large-Area, Free-Standing, Two-Dimensional Supramolecular Polymer Single-Layer Sheets for Highly Efficient Electrocatalytic Hydrogen Evolution. Angewandte Chemie International Edition, 54, 12058-12063. https://doi.org/10.1002/anie.201506048 |
[48] | Sun, Z.Z., Li, Q.W., Tang, Y., et al. (2019) Epitaxial Growth and Integration of Insulating Metal-Organic Frameworks in Electrochemistry. Journal of the American Chemical Society, 141, 11322-11327.
https://doi.org/10.1021/jacs.9b05869 |
[49] | Feng, X.L., Seifert, G., Zhuang, X.D., et al. (2017) Immobilizing Mo-lecular Metal Dithiolene-Diamine Complexes on 2D Metal-Organic Frameworks for Electrocatalytic H2 Production. Chemistry—A European Journal, 23, 2255-2260.
https://doi.org/10.1002/chem.201605337 |
[50] | Huang, W., Huang, X., Zhang, H., et al. (2017) Interdiffusion Reac-tion-Assisted Hybridization of Two-Dimensional Metal-Organic Frameworks and Ti3C2Tx Nanosheets for Electrocata-lytic Oxygen Evolution. ACS Nano, 11, 5800-5807.
https://doi.org/10.1021/acsnano.7b01409 |
[51] | Qiao, S.Z., Davey, K., Luo, J., et al. (2019) Intermediate Modulation on Noble Metal Hybridized to 2D Metal-Organic Framework for Accelerated Water Electrocatalysis. Chem, 5, 2429-2441. https://doi.org/10.1016/j.chempr.2019.06.016 |
[52] | Zhao, C., Chen, S. and Duan, J.J. (2017) Ultrathin Metal-Organic Framework Array for Efficient Electrocatalytic Water Splitting. Nature Communications, 8, Article No. 15341. https://doi.org/10.1038/ncomms15341 |