全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Atomic Spacetime Model Based on Atomic AString Functions

DOI: 10.4236/jamp.2022.109176, PP. 2604-2631

Keywords: Spacetime, Quantum, Atomic Function, AString, Soliton, Metriant, Unified Theory

Full-Text   Cite this paper   Add to My Lib

Abstract:

A novel model of spacetime and fields atomization based on Atomic Series over finite Atomic AString Functions is offered. Formulated Atomization Theorems allow representing polynomials, analytic functions, and solutions of field equations including General Relativity via superposition of solitonic atoms which can be associated with flexible spacetime quantum, metriants, or elementary distortions. Spacetime is conceptualized as a lattice of flexible Atomic Solitons adjusting locations to reproduce different metrics and other physical fields. It may offer the variants of unified field theory based on Atomic Solitons where, like in string theory, fields become interconnected having a common mathematical ancestor.

References

[1]  Einstein, A. (1933) On the Method of Theoretical Physics. Oxford University Press, New York.
https://openlibrary.org/books/OL6292654M
[2]  Eremenko, S. (2018) Atomic Solitons as a New Class of Solitons. Journal Nonlinear World, 16, 6.
https://www.researchgate.net/publication/329455498
[3]  Eremenko, S. (2018) Atomic Strings and Fabric of Spacetime. Achievements of Modern Radioelectronics, No. 6, 45-61.
https://www.researchgate.net/publication/320457739
[4]  Eremenko, S. (2020) Soliton Nature: Discover Beautiful Nature with 200 Images and Video Channel. Book Writing Inc., Los Angeles.
https://www.amazon.com/dp/1951630777
[5]  Eremenko, S. (2021) Atomic String Functions and Spacetime Quantization. 5th International Conference on Multi-Scale Computational Methods for Solids and Fluids, Split, 5 July 2021, 28.
https://www.researchgate.net/publication/352878876
[6]  Rvachev, V.L. and Rvachev, V.A. (1971) About One Finite Function. DAN URSR A, No. 6, 705-707.
[7]  Rvachev, V.L. (1982) Theory of R-Functions and Their Applications. Naukova Dumka, Kyiv.
[8]  Rvachev, V.L. and Rvachev, V.A. (1982) Non-Classical Methods in the Theory of Approximations in Boundary Value Problems. Naukova Dumka, Kyiv.
[9]  Kravchenko, V.F. and Rvachev, V.A. (1996) Application of Atomic Functions for Solutions of Boundary Value Problems in Mathematical Physics. Foreign Radioelectronics: Achievements of Modern Radioelectronics, 8, 6-22.
[10]  Kravchenko, V.F., Kravchenko, O.V., Pustovoit, V.I. and Pavlikov, V.V. (2016) Atomic Functions Theory: 45 Years behind. 2016 9th International Kharkiv Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW), Kharkiv, 20-24 June 2016, 1-4.
https://doi.org/10.1109/MSMW.2016.7538216
[11]  Kravchenko, V.F. (2003) Lectures on the Theory of Atomic Functions and Their Applications. Radiotechnika, Moscow.
[12]  Kravchenko, V.F. and Rvachev, V.L. (2009) Logic Algebra, Atomic Functions and Wavelets in Physical Applications. Fizmatlit, Moscow.
[13]  (1989) The Collected Papers of Albert Einstein. Princeton University Press, Princeton.
[14]  Taylor, E.F. and Wheeler, J.A. (1992) Spacetime Physics: Introduction to Special Relativity. W. H. Freeman, New York.
[15]  Carroll, S. (2003) Spacetime and Geometry. An Introduction to General Relativity.
[16]  Hawking, S. and Mlodinov, L. (2010) The Grand Design. Bantam Books, New York.
[17]  Kaku, M. (1999) Introduction to Superstring and M-Theory. 2nd Edition, Springer-Verlag, New York.
[18]  Rovelli, C. (2008) Quantum Gravity. Scholarpedia, 3, 7117.
https://doi.org/10.4249/scholarpedia.7117
[19]  Rovelli, C. (2001) Notes for a Brief History of Quantum Gravity. 9th Marcel Grossmann Meeting, Roma, July 2000, 32.
[20]  Greene, B. (2004) The Fabric of the Cosmos: Space, Time and Texture of Reality. Vintage Books, New York.
[21]  Eremenko, S. (1992) Natural Vibrations and Dynamics of Composite Materials and Constructions. Naukova Dumka, Kyiv.
[22]  Eremenko, S. (1991) Finite Element Methods in Solid Mechanics. Osnova, Kharkiv.
https://www.researchgate.net/publication/321171685
https://books.google.com.au/books?id=dyTLDwAAQBAJ
[23]  Eremenko, S. (2022) Atomic Spacetime and Fields Quantization.
https://www.researchgate.net/publication/358899315
[24]  Bounias, M. and Krasnoholovets, V. (2003) Scanning the Structure of Ill-Known Spaces: Part 1. Founding Principles about Mathematical Constitution of Space. Kybernetes: The International Journal of Systems & Cybernetics, 32, 945-975.
http://arXiv.org/abs/physics/0211096
https://doi.org/10.1108/03684920310483126
[25]  Rvachev, V.A. (1990) Compactly Supported Solutions of Functional-Differential Equations and Their Applications. Russian Mathematical Surveys, 45, 8.
http://iopscience.iop.org/0036-0279/45/1/R03
https://doi.org/10.1070/RM1990v045n01ABEH002324
[26]  Gotovac, B. and Kozulic, V. (1999) On a Selection of Basis Functions in Numerical Analyses of Engineering Problems. International Journal for Engineering Modelling, 12, 1-4, 25-41.
[27]  Kolodyazhny, V.M. and Rvachev, V.A. (2007) Atomic Functions: Generalization to the Multivariable Case and Promising Applications. Cybernetics and Systems Analysis, 43, 893-911.
https://doi.org/10.1007/s10559-007-0114-y
[28]  Analytic Function.
https://en.wikipedia.org/wiki/Analytic_function
[29]  Filippov, A.T. (2000) The Versatile Soliton. Modern Birkhauser Classics. Springer, Berlin.
[30]  Braun, O.M. and Kivshar, Yu.S. (2004) The Frenkel-Kontorova Model: Concepts, Methods, and Applications. Springer, Berlin.
https://doi.org/10.1007/978-3-662-10331-9
[31]  Novikov, S.P., Manakov, S.V., Pitaevskii, L.P. and Zakharov, V.E. (1984) Theory of Solitons: The Inverse Scattering Method. Springer-Verlag, Berlin.
[32]  Sine-Gordon Equation.
https://en.wikipedia.org/wiki/Sine-Gordon_equation
[33]  Kamber, G., Gotovac, H., Kozulic, V., Malenica, L. and Gotovac, B. (2020) Adaptive Numerical Modeling Using the Hierarchical Fup Basis Functions and Control Volume Isogeometric Analysis. International Journal for Numerical Methods in Fluids, 92, 138.
https://doi.org/10.1002/fld.4830
[34]  Veinik, A.I. (1991) Thermodynamics of Real Processes. Nauka i Technika, Minsk.
[35]  Smit, J. (2002) Introduction to Quantum Fields on a Lattice. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9780511583971
[36]  Rothe, H. (2005) Lattice Gauge Theories, an Introduction. World Scientific, Singapore.
https://doi.org/10.1142/5674
[37]  Smolin, L. (2000) Three Roads to Quantum Gravity. Basic Books, New York.
[38]  Meessen, A. (2021) Elementary Particles Result from Space-Time Quantization. Journal of Modern Physics, 12, 1573-1605.
https://doi.org/10.4236/jmp.2021.1211094
[39]  Susskind, L. and Friedman, A. (2014). Quantum Mechanics: The Theoretical Minimum. Basic Books, New York.
[40]  Walter, D. and Gies, H. (2000). Probing the Quantum Vacuum: Perturbative Effective Action Approach. Springer, Berlin.
[41]  Rafelski, J. and Muller, B. (1985) Structured Vacuum: Thinking about Nothing. H. Deutsch, Thun.
[42]  Eremenko, S. (2022) A String Functions in Theoretical Physics. International Conference on Atomic and R-Functions (ICAR), Virtual Workshop, Split, 1 February 2022, 38.
https://www.researchgate.net/publication/358264308
[43]  Eremenko, S. (2018) Atomic Machine Learning. Journal Neurocomputers, No. 3, 1-21.
https://www.researchgate.net/publication/322520539
[44]  Lederman, L. and Hill, C. (2013) Beyond the God Particle. Prometheus Books, New York.
[45]  Lagrange Inversion Theorem.
https://en.wikipedia.org/wiki/Lagrange_inversion_theorem
[46]  Tong, D. (2017) Quantum Field Theory. The University of Cambridge, Cambridge.
https://www.youtube.com/watch?v=zNVQfWC_evg
[47]  Carroll, S. (2013) The Particle at the End of the Universe.
https://www.youtube.com/watch?v=RwdY7Eqyguo
[48]  Dyson, F. (2013) Is a Graviton Detectable? International Journal of Modern Physics A, 28, Article ID: 1330041.
https://doi.org/10.1142/S0217751X1330041X
[49]  Krot, A. (2021) A Statistical Theory of Gravitating Body Formation in Extrasolar Systems. Cambridge Scholar Publishing, Cambridge.
[50]  Gudder, S. (2017) Discrete Spacetime and Quantum Field Theory.
https://arxiv.org/abs/1704.01639

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133