Understanding the molecular factors of rice degradation during its aging concerns our research team. This article emphasizes oryzenin-amylopectin. It aims to reveal the mechanism of amylopectin deterioration during rice aging. The research exploits the Natural Bond Analysis and ONION method at theory level DFT/B3LYP/6-31+G(d, p) and AM1. This methodological approach allows highlighting amylopectin transformation; oryzenin converts amylopectin into amyloidosis in continuous. This led to monosaccharides and disaccharides.
References
[1]
Koffi, K.A., N’Guessan, R.B. and Bamba, E.H.S. (2021) The Phospholipid Degradation in Paddy Rice: A Theoretical Model with DFT/B3LYP 6-311 G. European Journal of Applied Sciences, 9, 162-174. https://doi.org/10.14738/aivp.95.10897
[2]
N’guessan, B.R., Bamba, E.H.S. and Koffi, K.A. (2022) The Oryzenin’s Effect on Di, Tri and Quadri-Saccharide Degradation. An Investigation by a Mixed Method: ONIOM (DFT/B3LYP/6-31 + G(d, p): AM1). Computational Chemistry, 10, 97-119. https://doi.org/10.4236/cc.2022.102005
[3]
Abeysundara, A., Navaratne, S., Wickramasinghe, I. and Ekanayake, D. (2017) Determination of Changes of Amylose and Amylopectin Content of Paddy during Early Storage. International Journal of Science and Research, 6, 2094-2097. https://doi.org/10.21275/ART20164500
[4]
Cipcigan, F., Sokhan, V., Martyna, G. and Crain, J. (2018) Structure and Hydrogen Bonding at the Limits of Liquid Water Stability. Scientific Reports, 8, Article No. 1718. https://doi.org/10.1038/s41598-017-18975-7
[5]
Liu, J., He, X., Zhang, J.Z.H. and Qi, L.-W. (2018) Hydrogen-Bond Structure Dynamics in Bulk Water: Insights from ab Initio Simulations with Coupled Cluster Theory. Chemical Science, 9, 2065-2073. https://doi.org/10.1039/C7SC04205A
[6]
Arno, B., Layton, M.L. and Kathleen, K.V. (2000) Hydrogen Bonds in Carboxylic Acid-Carboxylate Systems in Solution. 1. In Anhydrous, Aprotic Media. Organic Letters, 2, 2007-2009. https://doi.org/10.1021/ol005776j
[7]
Zhang, Q. and Du, L. (2016) Hydrogen Bonding in the Carboxylic Acid-Aldehyde Complexes. Computational and Theoretical Chemistry, 1078, 123-128. https://doi.org/10.1016/j.comptc.2016.01.007
[8]
Weinhold, F. (2012) Natural Bond Orbital Analysis: A Critical Overview of Relationships to Alternative Bonding Perspectives. Journal of Computational Chemistry, 33, 2363-2379. https://doi.org/10.1002/jcc.23060
[9]
Behzadi, H., Esrafili, M.D. and Hadipour, N.L. (2007) A Theoretical Study of 17O, 14N and 2H Nuclear Quadrupole Coupling Tensors in the Real Crystalline Structure of Acetaminophen. Chemical Physics, 333, 97-104. https://doi.org/10.1016/j.chemphys.2007.01.011
[10]
Esrafili, M.D., Behzadi, H. and Hadipour, N.L. (2008) 14N and 17O Electric Field Gradient Tensors in Benzamide Clusters: Theoretical Evidence for Cooperative and Electronic Delocalization Effects in N-H…O Hydrogen Bonding. Chemical Physics, 348, 175-180. https://doi.org/10.1016/j.chemphys.2008.02.056
[11]
Reed, A.E., Curtiss, L.A. and Weinhold, F. (1988) Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint. Chemical Reviews, 88, 899-926. https://doi.org/10.1021/cr00088a005
[12]
Dapprich, S., Komáromi, I., Byun, K.S., Morokuma, K. and Frisch, M.J. (1999) A New ONIOM Implementation in Gaussian98. Part I. The Calculation of Energies, Gradients, Vibrational Frequencies and Electric Field Derivatives. Journal of Molecular Structure: THEOCHEM, 461-462, 1-21. https://doi.org/10.1016/S0166-1280(98)00475-8
[13]
Vreven, T., Byun, K.S., Komáromi, I., Dapprich, S., Montgomery, J.A., Morokuma, K. and Frisch, M.J. (2006) Combining Quantum Mechanics Methods with Molecular Mechanics Methods in ONIOM. Journal of Chemical Theory and Computation, 2, 815-826. https://doi.org/10.1021/ct050289g
Günay, N., Pir, H., Avcı, D. and Atalay, Y. (2013) NLO and NBO Analysis of Sarcosine-Maleic Acid by Using HF and B3LYP Calculations. Journal of Chemistry, 2013, Article ID: 712130. https://doi.org/10.1155/2013/712130
[16]
Murray, J.S. and Sen, K. (1996) Molecular Electrostatic Potentials: Concepts and Applications. Elsevier, Amsterdam, 105-538. https://doi.org/10.1016/S1380-7323(96)80042-2
[17]
Brinck, T. (1998) The Use of the Electrostatic Potential for Analysis and Prediction of Intermolecular Interactions. Theoretical and Computational Chemistry, 5, 51-93. https://doi.org/10.1016/S1380-7323(98)80005-8
[18]
Demircioğlu, Z., Albayrak, Ç. and Büyükgüngör, O. (2014) Theoretical and Experimental Investigation of (E)-2-([3,4-dimethylphenyl)imino]methyl)-3-methoxyphenol: Enolketo Tautomerism, Spectroscopic Properties, NLO, NBO and NPA Analysis. Journal of Molecular Structure, 1065-1066, 210-222. https://doi.org/10.1016/j.molstruc.2014.02.062
[19]
Bader, R.F.W., Carroll, M.T., Cheeseman, J.R. and Chang, C. (1987) Properties of Atoms in Molecules: Atomic Volumes. Journal of the American Chemical Society, 109, 7968-7979. https://doi.org/10.1021/ja00260a006
[20]
Arunan, E., Desiraju, G.R., Klein, R.A., Sadlej, J., Scheiner, S., Alkorta, I., Clary, D.C., Crabtree, R.H. and Dannenberg, J.J. (2011) Definition of the Hydrogen Bond (IUPAC Recommendations 2011). Pure and Applied Chemistry, 83, 1637-1641. https://doi.org/10.1351/PAC-REC-10-01-02
[21]
Joseph, J. and Jemmis, E.D. (2007) Red-, Blue-, or No-Shift in Hydrogen Bonds: A Unified Explanation. Journal of the American Chemical Society, 129, 4620-4632. https://doi.org/10.1021/ja067545z
[22]
Desiraju, G. and Steiner, T. (2001) The Weak Hydrogen Bond: In Structural Chemistry and Biology. Oxford University Press, Oxford, 480. https://doi.org/10.1093/acprof:oso/9780198509707.001.0001
[23]
Bondi, A. (1964) Van der Waals Volumes and Radii. The Journal of Physical Chemistry, 68, 441-451. https://doi.org/10.1021/j100785a001
[24]
Rowland, R.S. and Taylor, R. (1996) Intermolecular Nonbonded Contact Distances in Organic Crystal Structures: Comparison with Distances Expected from van der Waals Radii. The Journal of Physical Chemistry, 100, 7384-7391. https://doi.org/10.1021/jp953141+
[25]
Cao, Y., Wang, Y., Chen, X. and Ye, J. (2004) Study on Sugar Profile of Rice during Ageing by Capillary Electrophoresis with Electrochemical Detection. Food Chemistry, 86, 131-136. https://doi.org/10.1016/j.foodchem.2003.12.004