全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Mechanism of Degradation of Rice Starch Amylopectin by Oryzenin Using ONIOM Quantum Calculations [DFT/B3LYP/6-31+G(D, P): AM1]

DOI: 10.4236/cc.2022.104007, PP. 139-156

Keywords: Amylopectin, Hydrogen Bond, Theoretical Method, Starch, Oryzenin

Full-Text   Cite this paper   Add to My Lib

Abstract:

Understanding the molecular factors of rice degradation during its aging concerns our research team. This article emphasizes oryzenin-amylopectin. It aims to reveal the mechanism of amylopectin deterioration during rice aging. The research exploits the Natural Bond Analysis and ONION method at theory level DFT/B3LYP/6-31+G(d, p) and AM1. This methodological approach allows highlighting amylopectin transformation; oryzenin converts amylopectin into amyloidosis in continuous. This led to monosaccharides and disaccharides.

References

[1]  Koffi, K.A., N’Guessan, R.B. and Bamba, E.H.S. (2021) The Phospholipid Degradation in Paddy Rice: A Theoretical Model with DFT/B3LYP 6-311 G. European Journal of Applied Sciences, 9, 162-174.
https://doi.org/10.14738/aivp.95.10897
[2]  N’guessan, B.R., Bamba, E.H.S. and Koffi, K.A. (2022) The Oryzenin’s Effect on Di, Tri and Quadri-Saccharide Degradation. An Investigation by a Mixed Method: ONIOM (DFT/B3LYP/6-31 + G(d, p): AM1). Computational Chemistry, 10, 97-119.
https://doi.org/10.4236/cc.2022.102005
[3]  Abeysundara, A., Navaratne, S., Wickramasinghe, I. and Ekanayake, D. (2017) Determination of Changes of Amylose and Amylopectin Content of Paddy during Early Storage. International Journal of Science and Research, 6, 2094-2097.
https://doi.org/10.21275/ART20164500
[4]  Cipcigan, F., Sokhan, V., Martyna, G. and Crain, J. (2018) Structure and Hydrogen Bonding at the Limits of Liquid Water Stability. Scientific Reports, 8, Article No. 1718.
https://doi.org/10.1038/s41598-017-18975-7
[5]  Liu, J., He, X., Zhang, J.Z.H. and Qi, L.-W. (2018) Hydrogen-Bond Structure Dynamics in Bulk Water: Insights from ab Initio Simulations with Coupled Cluster Theory. Chemical Science, 9, 2065-2073.
https://doi.org/10.1039/C7SC04205A
[6]  Arno, B., Layton, M.L. and Kathleen, K.V. (2000) Hydrogen Bonds in Carboxylic Acid-Carboxylate Systems in Solution. 1. In Anhydrous, Aprotic Media. Organic Letters, 2, 2007-2009.
https://doi.org/10.1021/ol005776j
[7]  Zhang, Q. and Du, L. (2016) Hydrogen Bonding in the Carboxylic Acid-Aldehyde Complexes. Computational and Theoretical Chemistry, 1078, 123-128.
https://doi.org/10.1016/j.comptc.2016.01.007
[8]  Weinhold, F. (2012) Natural Bond Orbital Analysis: A Critical Overview of Relationships to Alternative Bonding Perspectives. Journal of Computational Chemistry, 33, 2363-2379.
https://doi.org/10.1002/jcc.23060
[9]  Behzadi, H., Esrafili, M.D. and Hadipour, N.L. (2007) A Theoretical Study of 17O, 14N and 2H Nuclear Quadrupole Coupling Tensors in the Real Crystalline Structure of Acetaminophen. Chemical Physics, 333, 97-104.
https://doi.org/10.1016/j.chemphys.2007.01.011
[10]  Esrafili, M.D., Behzadi, H. and Hadipour, N.L. (2008) 14N and 17O Electric Field Gradient Tensors in Benzamide Clusters: Theoretical Evidence for Cooperative and Electronic Delocalization Effects in N-H…O Hydrogen Bonding. Chemical Physics, 348, 175-180.
https://doi.org/10.1016/j.chemphys.2008.02.056
[11]  Reed, A.E., Curtiss, L.A. and Weinhold, F. (1988) Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint. Chemical Reviews, 88, 899-926.
https://doi.org/10.1021/cr00088a005
[12]  Dapprich, S., Komáromi, I., Byun, K.S., Morokuma, K. and Frisch, M.J. (1999) A New ONIOM Implementation in Gaussian98. Part I. The Calculation of Energies, Gradients, Vibrational Frequencies and Electric Field Derivatives. Journal of Molecular Structure: THEOCHEM, 461-462, 1-21.
https://doi.org/10.1016/S0166-1280(98)00475-8
[13]  Vreven, T., Byun, K.S., Komáromi, I., Dapprich, S., Montgomery, J.A., Morokuma, K. and Frisch, M.J. (2006) Combining Quantum Mechanics Methods with Molecular Mechanics Methods in ONIOM. Journal of Chemical Theory and Computation, 2, 815-826.
https://doi.org/10.1021/ct050289g
[14]  Frisch, M.J., Trucks, G.W., Schlegel, H.B., et al. (2009) Gaussian 09, Revision A.02. Gaussian, Inc., Wallingford.
[15]  Günay, N., Pir, H., Avcı, D. and Atalay, Y. (2013) NLO and NBO Analysis of Sarcosine-Maleic Acid by Using HF and B3LYP Calculations. Journal of Chemistry, 2013, Article ID: 712130.
https://doi.org/10.1155/2013/712130
[16]  Murray, J.S. and Sen, K. (1996) Molecular Electrostatic Potentials: Concepts and Applications. Elsevier, Amsterdam, 105-538.
https://doi.org/10.1016/S1380-7323(96)80042-2
[17]  Brinck, T. (1998) The Use of the Electrostatic Potential for Analysis and Prediction of Intermolecular Interactions. Theoretical and Computational Chemistry, 5, 51-93.
https://doi.org/10.1016/S1380-7323(98)80005-8
[18]  Demircioğlu, Z., Albayrak, Ç. and Büyükgüngör, O. (2014) Theoretical and Experimental Investigation of (E)-2-([3,4-dimethylphenyl)imino]methyl)-3-methoxyphenol: Enolketo Tautomerism, Spectroscopic Properties, NLO, NBO and NPA Analysis. Journal of Molecular Structure, 1065-1066, 210-222.
https://doi.org/10.1016/j.molstruc.2014.02.062
[19]  Bader, R.F.W., Carroll, M.T., Cheeseman, J.R. and Chang, C. (1987) Properties of Atoms in Molecules: Atomic Volumes. Journal of the American Chemical Society, 109, 7968-7979.
https://doi.org/10.1021/ja00260a006
[20]  Arunan, E., Desiraju, G.R., Klein, R.A., Sadlej, J., Scheiner, S., Alkorta, I., Clary, D.C., Crabtree, R.H. and Dannenberg, J.J. (2011) Definition of the Hydrogen Bond (IUPAC Recommendations 2011). Pure and Applied Chemistry, 83, 1637-1641.
https://doi.org/10.1351/PAC-REC-10-01-02
[21]  Joseph, J. and Jemmis, E.D. (2007) Red-, Blue-, or No-Shift in Hydrogen Bonds: A Unified Explanation. Journal of the American Chemical Society, 129, 4620-4632.
https://doi.org/10.1021/ja067545z
[22]  Desiraju, G. and Steiner, T. (2001) The Weak Hydrogen Bond: In Structural Chemistry and Biology. Oxford University Press, Oxford, 480.
https://doi.org/10.1093/acprof:oso/9780198509707.001.0001
[23]  Bondi, A. (1964) Van der Waals Volumes and Radii. The Journal of Physical Chemistry, 68, 441-451.
https://doi.org/10.1021/j100785a001
[24]  Rowland, R.S. and Taylor, R. (1996) Intermolecular Nonbonded Contact Distances in Organic Crystal Structures: Comparison with Distances Expected from van der Waals Radii. The Journal of Physical Chemistry, 100, 7384-7391.
https://doi.org/10.1021/jp953141+
[25]  Cao, Y., Wang, Y., Chen, X. and Ye, J. (2004) Study on Sugar Profile of Rice during Ageing by Capillary Electrophoresis with Electrochemical Detection. Food Chemistry, 86, 131-136.
https://doi.org/10.1016/j.foodchem.2003.12.004

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133