全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Entropy Production and Fractal Dimensions in Heavy Ion Nuclear Reaction at Intermediate Energies

DOI: 10.4236/jamp.2022.108171, PP. 2527-2537

Keywords: Entropy Production, Fractal Dimensions, Chaotic Behavior, Heavy Ion Nuclear Collision, Intermediate Energy

Full-Text   Cite this paper   Add to My Lib

Abstract:

The characteristics of the nonlinear dynamics in the Heavy Ion Collision (HIC) at intermediate energies have been studied by evaluating the productions of the Generalized Entropy (GE) and the Multifragmentation Entropy (ME) as well as the features of the information and fractal dimensions within the Isospin Quantum Molecular Dynamical Model compensated by the lattice methods. Results demonstrate from various views that the existence of deterministic chaos in the dynamical process of reaction.

References

[1]  Aichelin, J. (1991) “Quantum” Molecular Dynamics—A Dynamical Microscopicn-Body Approach to Investigate Fragment Formation and the Nuclear Equation of State Inheavy Ion Collisions. Physics Reports, 202, 233-360.
https://doi.org/10.1016/0370-1573(91)90094-3
[2]  Das Gupta, S. and Mekjian, A.Z. (1998) Phase Transition in a Statistical Model for Nuclear Multifragmentation. Physical Review C, 57, 1361-1365.
https://doi.org/10.1103/PhysRevC.57.1361
[3]  Liu, H. L., Ma, Y.G., Bonasera, A., Deng, X.G., Lopez, O. and Veselsky, M (2017) Mean Free Path and Shear Viscosity in Central 129Xe+119Sn Collisions below 100 MeV/Nucleon. Physical Review C, 96, Article ID: 064604.
https://doi.org/10.1103/PhysRevC.96.064604
[4]  Lin, W., Ren, P., Zheng, H., Liu, X., Huang, M., Wada, R. and Qu, G. (2018) Sensitivity Study of Experimental Measures for the Nuclear Liquid-Gas Phase Transition in the Statistical Multifragmentation Model. Physical Review C, 97, Article ID: 054615.
https://doi.org/10.1103/PhysRevC.97.054615
[5]  Liu, H.L., Ma, Y.G. and Fang, D.Q. (2019) Finite-Size Scaling Phenomenon of Nuclear Liquid—Gas Phase Transition Probes. Physical Review C, 99, Article ID: 054614.
https://doi.org/10.1103/PhysRevC.99.054614
[6]  Bowman, D.R., Peaslee, G.F., DeSouza, R.T., Carlin, N., Gelbke, C.K., Gong, W.G., et al. (1991) Multifragment Disintegration of the 129Xe+197Au System at E/A = 50 MeV. Physical Review Letters, 67, 1527-1530.
https://doi.org/10.1103/PhysRevLett.67.1527
[7]  Minich. R.W., Agarwal. S., Bujak. A., Chuang, J., Finn, J.E., Gutay, L.J., et al. (1982) Critical Phenomena in Hadronic Matter and Experimental Isotopic Yields in High Energy Proton-Nucleus Collisions. Physics Letters B, 118, 458-460.
https://doi.org/10.1016/0370-2693(82)90224-6
[8]  Richert, J. and Wagner, P. (2001) Microscopic Model Approaches to Fragmentation of Nuclei and Phase Transitions in Nuclear Matter. Physics Reports, 350, 1-92.
https://doi.org/10.1016/S0370-1573(00)00120-4
[9]  Borderie, B. and Rivet, M.F. (2008) Nuclear Multifragmentation and Phase transition for Hot Nuclei. Progress in Particle and Nuclear Physics, 61, 551-601.
https://doi.org/10.1016/j.ppnp.2008.01.003
[10]  Chomaz, P., Colonna, M. and Rdrup, J. (2004) Nuclear Spinodal Fragmentation. Physics Reports, 389, 263-440.
https://doi.org/10.1016/j.physrep.2003.09.006
[11]  Jakobsson, B., Jensson, G., Karlsson, L., Kopljar, V., Norén, B., Söderström, K., et al. (1990) On the Observation of a Transition from Fusion to Multifragmentation in High Multiplicity 16O Induced Reactions. Nuclear Physics A, 509, 195-220.
https://doi.org/10.1016/0375-9474(90)90381-U
[12]  Burgio, G.F., Baldo, M. and Rapisarda, A. (1994) Non-Linear Mean Field Dynamics in the Nuclear Spinodal Zone. Physics Letters B, 321, 307-311.
https://doi.org/10.1016/0370-2693(94)90247-X
[13]  Wang, N., Wu, X.-Z., Li, Z.-X., Wang, N., Zhuo, Y.-Z. and Sun, X.-Q. (2000) Behavior of the Lyapunov Exponent and Phase Transition in Nuclei. Chinese Physics Letters, 17, 711-713.
https://doi.org/10.1088/0256-307X/17/10/004
[14]  Zhang, Y., Wu, X. and Li, Z. (2004) Connection Between the Largest Lyapunov Exponent, Density Fluctuation and Multifragmentation in Excited Nuclear. Physical Review C, 69, Article ID: 044609.
https://doi.org/10.1103/PhysRevC.69.044609
[15]  Heiselberg, H., Pethick, C.J. and Ravenhall, D.G. (1988) Instabilities in Hot Nuclear Matter: A Mechanism for Nuclear Fragmentation. Physical Review Letters, 61, 818-821.
https://doi.org/10.1103/PhysRevLett.61.818
[16]  Schuster, H. G. and Just, W. (2005) Deterministic Chaos. 4th Revised and Enlarged Edition, WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim.
[17]  Chen, L.W., Ge, L., Zhang, X. and Zhang, F. (1997) Isospin Equilibrium and Non-Equilibrium in Heavy-Ion Collisions at Intermediate Energies. Journal of Physics G: Nuclear and Particle Physics, 23, 211-218.
https://doi.org/10.1088/0954-3899/23/2/008
[18]  Liu, J.Y., Guo, W.J., Xing, Y.-Z., Zuo, W., Lee, X.-G. and Li, Z.-H. (2002) Probing the Isospin Dependent In-Medium Nucleon-Nucleon Cross Section by Nucleon Emissions. Physics Letters B, 540, 213-219.
https://doi.org/10.1016/S0370-2693(02)02174-3
[19]  Xing, Y.-Z., Liu, J.Y. and Guo, W.J. (2003) Influence of Medium Correction of Nucleon-Nucleon Cross-Section on the Fragmentation and Nucleon Emission. Nuclear Physics A, 723, 483-495.
https://doi.org/10.1016/S0375-9474(03)01433-7
[20]  Liu, J.-Y., Guo, W.-J., Xing, Y.-Z., Zou, W. and Lee, X.-G. (2003) Influence of a Momentum Dependent Interaction on the Isospin Dependence of Fragmentation and Dissipation in Intermediate Energy Heavy Ion Collisions. Physical Review C, 67, Article ID: 024608.
https://doi.org/10.1103/PhysRevC.67.024608
[21]  Liu, J.Y., Guo, W.-J., Wang, S.-J., Zuo, W., Zhao, Q. and Yang, Y.-F. (2001) Nuclear Stopping as a Probe for In-Medium Nucleon-Nucleon Cross Sections in Intermediate Energy Heavy Ion Collisions. Physical Review Letters, 86, 975-978.
https://doi.org/10.1103/PhysRevLett.86.975
[22]  Cai, X., Feng, J., Shen, W., Ma, Y., Wang, J. and Ye, W. (1998) In-Medium Nucleon-Nucleon Cross Section and Its Effect on Total Nuclear Reaction Cross Section. Physical Review C, 58, 572.
https://doi.org/10.1103/PhysRevC.58.572
[23]  Xing, Y.-Z., Zhang, H.F., Liu, X.B. and Zheng, Y.-M. (2017) Pauli-Blocking Effect in Two-Body Collisions Dominates the In-Medium Effects in Heavy-Ion Reactions Near Fermienergy. Nuclear Physics A, 957, 135-143.
https://doi.org/10.1016/j.nuclphysa.2016.08.006
[24]  Xing, Y.-Z., Liu, X.-X., Liu, X.-B., Zhang, H.F. and Zheng, Y.-M. (2017) Nuclear Stopping Power Evaluated via Free Protons Emitted in Reaction Xe+Sn Near Fermi Energy. International Journal of Modern Physics E, 26, Article ID: 1750010.
https://doi.org/10.1142/S0218301317500100
[25]  Csernai, L.P. and Kapusta, J.I. (1984) Entropy and Cluster Production in Nuclear Collisions. Physics Reports, 131, 223-318.
https://doi.org/10.1016/0370-1573(86)90031-1
[26]  Bertsch, G. and Cugnon, J. (1981) Entropy Production in High Energy Collision. Physical Review C, 24, 2514-2520.
https://doi.org/10.1103/PhysRevC.24.2514
[27]  Kapusta, J. (1981) Viscous Heating of Expanding Fireballs. Physical Review C, 24, 2545-2551.
https://doi.org/10.1103/PhysRevC.24.2545
[28]  Das Guta, S., Gale, C. and Gallego, J. (1986) Microscopic Model for Nuclear Breakup in Heavy Ion Collision. Physical Review C, 33, 1634-1640.
https://doi.org/10.1103/PhysRevC.33.1634
[29]  Atalmi, A., Baldo, M., Burgio, G.F. and Rapisarda, A. (1998) Generalized Entropy and Temperature in Nuclear Multifragmentation. Physical Review C, 58, 2238-2248.
https://doi.org/10.1103/PhysRevC.58.2238
[30]  Schuster, H.G. (1984) Deterministic Chaos. Physik-Verlag, Weinheim.
[31]  Feder, J. (1988) Fractals. Plenum Press, New York.
https://doi.org/10.1007/978-1-4899-2124-6
[32]  Ma, Y.G. (1999) Application of Information Theory in Nuclear Liquid Gas Phase Transition. Physical Review Letters, 83, 3617-3620.
https://doi.org/10.1103/PhysRevLett.83.3617
[33]  Gutzwiller, M.C. (1990) Chaos in Classical and Quantum Mechanics. Springer-Verlag, New York.
https://doi.org/10.1007/978-1-4612-0983-6
[34]  Bialas, A. and Peschanski, R. (1986) Moments of Rapidity Distributions as a Measure of Short-Range Fluctuations in High-Energy Collisions. Nuclear Physics B, 273, 703-718.
https://doi.org/10.1016/0550-3213(86)90386-X
[35]  Ploszajczak, M. and Tucholski, A. (1991) Intermi’Itency in Nuclear Multifragmentation. Nuclear Physics A, 523, 651-676.
https://doi.org/10.1016/0375-9474(91)90042-5
[36]  Deangelis, A.R., Gross, D.H.E. and Heck, R. (1992) Intermittency in and the Fractal Nature of Nuclear Fragmentation. Nuclear Physics A, 537, 606-630.
https://doi.org/10.1016/0375-9474(92)90370-Y
[37]  Maruyama, T., Niita, K. and Oyamatsu, K. (1998) Fluctuations and Intermittency in Multifragmentation Processes. Physical Review C, 57, 655-665.
https://doi.org/10.1103/PhysRevC.57.655
[38]  Ge, L.X., Zhang, X.D. and Zhu, Q.L. (1994) Intermittency in the Heavy Ion Collisions at Intermediate and High Energies. High Energy Physics and Nuclear Physics, 18, 428. (In Chinese)
[39]  Gross, D.H.E., De Angelis, A.R., Jaqaman, H.R., Jicai, P. and Heck, R. (1992) Intermittency in the Multifragmentation of Hot Nuclei? Physical Review Letters, 68, 146-149.
https://doi.org/10.1103/PhysRevLett.68.146
[40]  Lee, S.J. and Mekjiant, A.Z. (1993) Self-Similarity and Scaling Behavior in Nuclear Collision. Physical Review C, 69, 2266-2287.
https://doi.org/10.1103/PhysRevC.47.2266

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133