Applying the Density Function Theory (DFT) combined with LCAO basis set and
employing the B3LYP hybrid functional, the optimized geometrical parameters, electronic
properties, as well as the Infrared and Raman spectra for wurtzite-ZnO structure
were investigated.Prior to computing, ZnO thin film prepared by the spray
pyrolysis method is characterized by X-ray diffraction using Rietveld refinement.
This analysis shows that ZnO has hexagonal wurtzite structure (P63mc)
with lattice parameters, a = 3.2467 and c = 5.2151 Å in good agreement with our
predicted optimized geometry. Atomic force microscopy (AFM), Raman spectroscopy
and UV-Vis-NIR spectrophotometry techniques are used to explore morphological, optical
and vibrational properties of the sprayed ZnO thin film. The computed band gap is in excellent agreement with that deduced from UV-Vis transmission . The simulated infrared and Raman spectra were also calculated, anda good agreement with the measured
spectra is obtained. Finally, a detailed interpretation of the infrared and Raman
spectra is reported.
References
[1]
Aoki, T. and Hatanaka, Y. (2000) ZnO Diode Fabricated by Excimer-Laser Doping. Applied Physics Letters, 76, 3257-3258. https://doi.org/10.1063/1.126599
[2]
Lupan, O., Emelchenko, G.A., Ursaki, V.V., Chai, G., Redkin, A.N., Gruzintsev, A.N., Tiginyanu, I.M., Chow, L., Ono, L.K., Cuenya, B.R., Heinrich, H. and Yakimov, E.E. (2010) Synthesis and Characterization of ZnO Nanowires for Nanosensor Applications. Materials Research Bulletin, 45, 1026-1032. https://doi.org/10.1016/j.materresbull.2010.03.027
[3]
Zhang, Q., Dandeneau, C.S., Zhou, X. and Cao, G. (2009) ZnO Nanostructures for Dye-Sensitized Solar Cells. Advanced Materials, 21, 4087-4108. https://doi.org/10.1002/adma.200803827
[4]
Norton, D.P., Heo, Y.W., Ivill, M.P., Ip, K., Pearton, S.J., Chisholm, M.F. and Steiner, T. (2004) ZnO: Growth, Doping & Processing. Materials Today, 7, 34-40. https://doi.org/10.1016/S1369-7021(04)00287-1
[5]
Janotti, A. and Van de Walle, C.G. (2009) Fundamentals of Zinc Oxide as a Semiconductor. Reports on Progress in Physics, 72, 126501-126530. https://doi.org/10.1088/0034-4885/72/12/126501
[6]
Lacerda, L.H.S. and Lazaro, S.R.L. (2016) Ba-Doped ZnO Materials: A DFT Simulation to Investigate the Doping Effect on Ferroelectricity. Química Nova, 39, 261-266. https://doi.org/10.5935/0100-4042.20160023
[7]
Reza, E., Reza, G.M. and Hossein, A. (2014) Sol-Gel Derived Al and Ga Co-Doped ZnO Thin Films: An Optoelectronic Study. Applied Surface Science, 290, 252-259. https://doi.org/10.1016/j.apsusc.2013.11.062
[8]
Qasem, A.D., Saleem, G.R., Zain, H.Y. and Mohammed, A.G. (2013) Crystalline Nanostructured Cu Doped ZnO Thin Films Grown at Room Temperature by Pulsed Laser Deposition Technique and Their Characterization. Applied Surface Science, 270, 104-108. https://doi.org/10.1016/j.apsusc.2012.12.126
[9]
Young, M.T. and Hee, C.M. (2013) Optical and Electrical Properties of Mg-Doped Zinc Tin Oxide Films Prepared by Radio Frequency Magnetron Sputtering. Applied Surface Science, 286, 131-136. https://doi.org/10.1016/j.apsusc.2013.09.035
[10]
Li, X., Asher, S.E., Limpijumnong, S., Keyes, B.M., Perkins, C.L., Barnes, T.M., Moutinho, H.R., Luther, J.M., Zhang, S.B., Wei, S.H. and Coutts, T.J. (2006) Impurity Effects in ZnO and Nitrogen-Doped ZnO Thin Films Fabricated by MOCVD. Journal of Crystal Growth, 287, 94-100. https://doi.org/10.1016/j.jcrysgro.2005.10.050
[11]
Boukhachem, A., Ouni, B., Karyaoui, M., Madani, A., Chtourou, R. and Amlouk, M. (2012) Structural, Opto-Thermal and Electrical Properties of ZnO:Mo Sprayed Thin Films. Materials Science in Semiconductor Processing, 15, 282-292. https://doi.org/10.1016/j.mssp.2012.02.014
[12]
Mhamdi, A., Ouni, B., Amlouk, A., Boubaker, K. and Amlouk, M. (2014) Study of Nickel Doping Effects on Structural, Electrical and Optical Properties of Sprayed ZnO Semiconductor Layers. Journal of Alloys and Compounds, 582, 810-822. https://doi.org/10.1016/j.jallcom.2013.08.080
[13]
Abd-Lefdil, M., Douayar, A., Belayachi, A., Reshak, A.H., Fedorchuk, A.O., Pramodini, S., Poornesh, P., Nagaraja, K.K. and Nagaraja, H.S. (2014) Third Harmonic Generation Process in Al Doped ZnO Thin Films. Journal of Alloys and Compounds, 584, 7-12. https://doi.org/10.1016/j.jallcom.2013.08.134
[14]
Ilican, S., Caglar, Y., Caglar, M. and Yakuphanoglu, F. (2006) Electrical Conductivity, Optical and Structural Properties of Indium-Doped ZnO Nanofiber Thin Film Deposited by Spray Pyrolysis Method. Physica E: Low-Dimensional Systems and Nanostructures, 35, 131-138. https://doi.org/10.1016/j.physe.2006.07.009
[15]
Mariappan, R., Ponnuswamy, V., Suresh, P., Suresh, R., Ragavendar, M. and Chandra, B.A. (2014) Nanostructured CexZn1‐xO Thin Films: Influence of Ce Doping on the Structural, Optical and Electrical Properties. Journal of Alloys and Compounds, 588, 170-176. https://doi.org/10.1016/j.jallcom.2013.10.210
[16]
Yu, Z.G., Gong, H. and Wu, P. (2006) Lattice Dynamics and Electrical Properties of Wurtzite ZnO Determined by a Density Functional Theory Method. Journal of Crystal Growth, 287, 199-203. https://doi.org/10.1016/j.jcrysgro.2005.10.067
[17]
Bovhyra, R., Popovych, D., Bovgyra, O. and Serednytski, A. (2017) Ab Initio Study of Structural and Electronic Properties of (ZnO)n “Magical” Nanoclusters n = (34, 60). Nanoscale Research Letters, 12, 76-82. https://doi:10.1186/s11671-017-1848-8
[18]
Charifi, Z., Baaziz, H. and Reshak, A.H. (2007) Ab-Initio Investigation of Structural, Electronic and Optical Properties for Three Phases of ZnO Compound. Physica Status Solidi, 244, 3154-3167. https://doi.org/10.1002/pssb.200642471
[19]
John, R. and Padmavathi, S. (2016) Ab Initio Calculations on Structural, Electronic and Optical Properties of ZnO in Wurtzite Phase. Crystal Structure Theory and Applications, 5, 24-41. http://www.scirp.org/journal/csta https://doi.org/10.4236/csta.2016.52003
[20]
Franklin, L., Ekuma, C.E., Zhao, G.L. and Bagayoko, D. (2013) Density Functional Theory Description of Electronic Properties of Wurtzite Zinc Oxide. Journal of Physics and Chemistry of Solids, 74, 729-736. https://doi.org/10.1016/j.jpcs.2013.01.013
[21]
Calzolari, A. and Nardelli, M.B. (2013) Dielectric Properties and Raman Spectra of ZnO from a First Principles Finite-Differences/Finite-Fields Approach. Scientific Reports, 3, Article No. 2999. https://doi.org/10.1038/srep02999
[22]
Bernasconi, L., Tomić, S., Ferrero, M., Rérat, M., Orlando, R., Dovesi, R. and Harrison, N.M. (2011) First-Principles Optical Response of Semiconductors and Oxide Materials. Physical Review B, 83, 195325-195332. https://doi.org/10.1103/PhysRevB.83.195325
[23]
Samanta, K., Dussan, S., Katiyar, R.S. and Bhattacharya, P. (2007) Structural and Optical Properties of Nanocrystalline Zn1‐xMnxO. Applied Physics Letters, 90, 261903-261906. https://doi.org/10.1063/1.2751593
[24]
Brittman, S., Adhyaksa, G.W.P. and Garnett, E.C. (2015) The Expanding World of Hybrid Perovskites: Materials Properties and Emerging Applications. MRS Communications, 5, 7-26. https://doi.org/10.1557/mrc.2015.6
[25]
Damen, T., Porto, S. and Tell, B. (1966) Raman Effect in Zinc Oxide. Physical Review, 142, 570-574. https://doi.org/10.1103/PhysRev.142.570
[26]
Cheng, A., Tzeng, Y., Xu, H., Alur, S., Wang, Y., Park, M., Wu, T., Shannon, C., Kim, D. and Wang, D. (2009) Raman Analysis of Longitudinal Optical Phonon-Plasmon Coupled Modes of Aligned ZnO Nanorods. Journal of Applied Physics, 105, Article ID: 073104. https://doi.org/10.1063/1.3093877
[27]
Serrano, J., Widulle, F., Romero, A.H., Rubio, A., et al. (2003) Dependence of Phonon Widths on Pressure and Isotopic Mass: ZnO. Physica Status Solidi (b), 235, 260-266. https://doi.org/10.1002/pssb.200301566
[28]
McCluskey, M.D. and Jokela, S.J. (2009) Defects in ZnO. Journal of Applied Physics, 106, 71101-71104. https://doi.org/10.1063/1.3216464
[29]
Cheng, B., Sun, W., Jiao, J., Tian, B., Xiao, Y. and Lei, S. (2010) Disorder-Induced Raman Scattering Effects in One-Dimensional ZnO Nanostructures by Incorporation and Anisotropic Distribution of Dy and Li Codopants. Journal of Raman Spectroscopy, 41, 1221-1226. https://doi.org/10.1002/jrs.2590
[30]
Raymand, D., Jacobsson, T.J., Hermansson, K. and Edvinsson, T. (2012) Investigation of Vibrational Modes and Phonon Density of States in ZnO Quantum Dots. The Journal of Physical Chemistry C, 116, 6893-6901. https://doi.org/10.1021/jp300985k
[31]
Becke, A.D. (1998) A New Inhomogeneity Parameter in Density-Functional Theory. The Journal of Chemical Physics, 109, 2092-2099. https://doi.org/10.1063/1.476722
[32]
Dovesi, R., Saunders, V.R., Roetti, C., Orlando, R., Zicovich-Wilson, C.M., Pascale, F., Civalleri, B., Doll, K., Harrison, N.M., Bush, I.J., Ph D’Arco, Llunell, M., Causà, M., Noël, Y., Maschio, L., Erba, A., Rerat, M. and Casassa, S. (2014) CRYSTAL14 User’s Manual. University of Torino, Torino, 382. http://www.crystal.unito.it
[33]
Towler, M.D., Allan, N.L., Harrison, N.M., Saunders, V.R., Mackrodt, W.C. and Aprà, E. (1994) Ab Initio Study of MnO and NiO. Physical Review B, 50, 5041-5054. https://doi.org/10.1103/PhysRevB.50.5041
[34]
Jaffe, J.E. and Hess, A.C. (1993) Hartree-Fock Study of Phase Changes in ZnO at High Pressure. Physical Review B, 48, 7903-7909. https://doi.org/10.1103/PhysRevB.48.7903
[35]
Doll, K. (2001) Implementation of Analytical Hartree-Fock Gradients for Periodic Systems. Computer Physics Communications, 137, 74-88. https://doi.org/10.1016/S0010-4655(01)00172-2
[36]
Monkhorst, H.J. and Pack, J.D. (1976) Special Points for Brillouin-Zone Integrations. Physical Review B, 13, 5188-5192. https://doi.org/10.1103/PhysRevB.13.5188
[37]
Maschio, L., Kirtman, B., Salustro, S., Zicovich-Wilson, C.M., Orlando, R. and Dovesi, R. (2013) Raman Spectrum of Pyrope Garnet. A Quantum Mechanical Simulation of Frequencies, Intensities, and Isotope Shifts. The Journal of Physical Chemistry A, 117, 11464-11471. https://doi.org/10.1021/jp4099446
[38]
Ferrero, M., Rérat, M., Kirtman, B. and Dovesi, R. (2008) Calculation of First and Second Static Hyperpolarizabilities of One- to Three-Dimensional Periodic Compounds. Implementation in the CRYSTAL Code. The Journal of Chemical Physics, 129, Article ID: 244110. https://doi.org/10.1063/1.3043366
[39]
Maschio, L., Kirtman, B., Rérat, M., Orlando, R. and Dovesi, R. (2013) Ab Initio Analytical Raman Intensities for Periodic Systems through a Coupled Perturbed Hartree-Fock/Kohn-Sham Method in an Atomic Orbital Basis. I. Theory. The Journal of Chemical Physics, 139, 164101-164124. https://doi.org/10.1063/1.4824442
[40]
Ferrari, A.M., Valenzano, L., Meyer, A., Orlando, R. and Dovesi, R. (2009) Quantum-Mechanical Ab Initio Simulation of the Raman and IR Spectra of Fe3Al2Si3O12 Almandine. The Journal of Physical Chemistry A, 113, 11289-11294. https://doi.org/10.1021/jp901993e
[41]
Doll, K., Saunders, V.R. and Harrison, N.M. (2001) Analytical Hartree-Fock Gradients for Periodic Systems. International Journal of Quantum Chemistry, 82, 1-13. https://doi.org/10.1002/1097-461X(2001)82:1<1::AID-QUA1017>3.0.CO;2-W
[42]
Doll, K., Dovesi, R. and Orlando, R. (2004) Analytical Hartree-Fock Gradients with Respect to the Cell Parameter for Systems Periodic in Three Dimensions. Theoretical Chemistry Accounts, 112, 394-402. https://doi.org/10.1007/s00214-004-0595-y
[43]
Rietveld, H.M. (1969) A Profile Refinement Method for Nuclear and Magnetic Structures. Journal of Applied Crystallography, 2, 65-71. https://doi.org/10.1107/S0021889869006558
[44]
Guinebretière, R. (2007) X-Ray Diffraction by Polycrystalline Materials. ISTE Ltd., London. https://doi.org/10.1002/9780470612408
[45]
Ismail, A. and Abdullah, M.J. (2013) The Structural and Optical Properties of ZnO Thin Films Prepared at Different RF Sputtering Power. Journal of King Saud University—Science, 25, 209-215. https://doi.org/10.1016/j.jksus.2012.12.004
[46]
Charpentier, C., Prod’homme, P., Maurin, I., Chaigneau, M. and Roca iCabarrocas, P. (2011) X-Ray Diffraction and Raman Spectroscopy for a Better Understanding of ZnO:Al Growth Process. EPJ Photovoltaics, 2, 25002-25010. https://doi.org/10.1051/epjpv/2011026
[47]
Harun, K., Mansor, N., Ahmad, Z.A. and Mohamad, A.A. (2016) Electronic Properties of ZnO Nanoparticles Synthesized by Sol-Gel Method: A LDA+U Calculation and Experimental Study. Procedia Chemistry, 19, 125-132. https://doi.org/10.1016/j.proche.2016.03.125
[48]
Ouni, B., Zouini, M., Lakhdar, M.H., Larbi, T., Dimassi, W. and Amlouk, M. (2015) Preparation and Characterization of the Rod-Shaped Stibnite. Materials Research Bulletin, 67, 191-195. https://doi.org/10.1016/j.materresbull.2015.03.003
[49]
Boubaker, K. (2011) Atomic Structures beyond the Spherical Approximation along with PNC as Conjectured Explanations to Urbach Tailing in Neutral Isolated Ytterbium. The European Physical Journal B, 84, 235-239. https://doi.org/10.1140/epjb/e2011-20614-y
[50]
Boubaker, K. (2013) A Support to the Lattice Compatibility Theory: Nanoscale Patterns of Manganese-Doped Lattices in Terms of the Urbach Energy and Faraday Effect. Mendeleev Communications, 23, 160-162. https://doi.org/10.1016/j.mencom.2013.05.014
[51]
Xia, C., Wang, F. and Hu, C. (2014) Theoretical and Experimental Studies on Electronic Structure and Optical Properties of Cu-Doped ZnO. Journal of Alloys and Compounds, 589, 604-608. https://doi.org/10.1016/j.jallcom.2013.11.066
[52]
Alkahtani, E.A., Merad, A.E., Boufatah, M.R. and Benosman, A. (2017) DFT Investigation of Structural, Electronic and Optical Properties of Pure and Er-Doped ZnO: Modified Becke-Johnson Exchange Potential. Optik, 128, 274-280. https://doi.org/10.1016/j.ijleo.2016.10.032
[53]
Muscat, J., Wander, A. and Harrison, N.M. (2001) On the Prediction of Band Gaps from Hybrid Functional Theory. Chemical Physics Letters, 342, 397-401. https://doi.org/10.1016/S0009-2614(01)00616-9
[54]
Serrano, J., Romero, A., Manjón, F., Lauck, R., Cardona, M. and Rubio, A. (2004) Pressure Dependence of the Lattice Dynamics of ZnO: An Ab Initio Approach. Physical Review B, 69, 94306-94320. https://doi.org/10.1103/PhysRevB.69.094306
[55]
Cuscó, R., Alarcón-Lladó, E., Ibáñez, J., Artús, L., Jiménez, J., Wang, B. and Callahan, M. (2007) Temperature Dependence of Raman Scattering in ZnO. Physical Review B, 75, 165202-165213. https://doi.org/10.1103/PhysRevB.75.165202
[56]
Yahia, S.B., Znaidi, L., Kanaev, A. and Petitet, J.P. (2008) Raman Study of Oriented ZnO Thin Films Deposited by Sol-Gel Method. Spectrochimica Acta Part A, 71, 1234-1238. https://doi.org/10.1016/j.saa.2008.03.032
[57]
Shkir, M., Chandekar, K.V., Alshehri, B.M., Khan, A., AlFaify, S. and Hamdy, M.S. (2020) A Remarkable Enhancement in Photocatalytic Activity of Facilely Synthesized Terbium@Zinc Oxide Nanoparticles by Flash Combustion Route for Optoelectronic Applications. Applied Nanoscience, 10, 1811-1823. https://doi.org/10.1007/s13204-019-01236-6
[58]
Thangavel, R., Moirangthem, R.S., Lee, W.S., Chang, Y.C., Wei, P.K. and Kumar, J. (2010) Cesium Doped and Undoped ZnO Nanocrystalline Thin Films: A Comparative Study of Structural and Micro-Raman Investigation of Optical Phonons. Journal of Raman Spectroscopy, 41, 1594-1600. https://doi.org/10.1002/jrs.2599
[59]
Wrzesinski, J. and Fröhlich, D. (1997) Two-Photon and Three-Photon Spectroscopy of ZnO under Uniaxial Stress. Physical Review B, 56, 13087-13093. https://doi.org/10.1103/PhysRevB.56.13087
[60]
Pandiyarajan, T. and Karthikeyan, B. (2012) Cr Doping Induced Structural, Phonon and Excitonic Properties of ZnO Nanoparticles. Journal of Nanoparticle Research, 14, 647-656. https://doi.org/10.1007/s11051-011-0647-x
[61]
Khan, Z.R., Khan, M.S., Zulfequar, M. and Shahid Khan, M. (2011) Optical and Structural Properties of ZnO Thin Films Fabricated by Sol-Gel Method. Materials Sciences and Applications, 2, 340-345. https://doi.org/10.4236/msa.2011.25044
[62]
Ashkenov, N., Mbenkum, B.N., Bundesmann, C., Riede, V., Lorenz, M., Spemann, D., Kaidashev, E.M., Kasic, A., Schubert, M., Grundmann, M., Wagner, G., Neumann, H., Darakchieva, V., Arwin, H. and Monemar, B. (2003) Infrared Dielectric Functions and Phonon Modes of High-Quality ZnO Films. Journal of Applied Physics, 93, 126-133. https://doi.org/10.1063/1.1526935