全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Geometrical Diagnostics for Modified Gravitational Theory with the Different Formalisms

DOI: 10.4236/jhepgc.2022.84059, PP. 874-889

Keywords: Time-Variable Gravitational Constant, Metric Formalism, Palatini Formalism, Geometrical Diagnostic

Full-Text   Cite this paper   Add to My Lib

Abstract:

Geometrical diagnostic methods were often applied to distinguish the gravitational models. But it is scarce to investigate the differences between the different formalisms of modified gravitational theories (e.g. the metric formalism and the Palatini formalism). In this paper, we discriminate the gravitational theory with the different formalisms by using the geometrical diagnostic methods. For a considered modified theory of gravity (e.g. the f(R) theory or GBD theory), we can see that the difference between the two formalisms is remarkable according to the diagnostic results. And relative to the ΛCDM model, there are more deviations in metric formalism than those in Palatini formalism, according to the {r, s} diagnostic. Given that the GBD (generalized Brans-Dicke theory) is a time-variable Newton gravitational constant (VG) theory, the differences between the VG theory and the constant-G theory are studied. It indicates that the variation of Newton’s gravitational constant could induce notable effects on geometrical quantities (e.g. r, s and q) in both metric formalism and Palatini formalism.

References

[1]  Zwicky, F. (1933) Die Rotverschiebung von extragalaktischen Nebeln. Helvetica Physica Acta, 6, 110-127.
[2]  Smith, S. (1936) The Mass of the Virgo Cluster. The Astrophysical Journal, 83, 23-30.
https://doi.org/10.1086/143697
[3]  Guth, A.H. (1981) Inflationary Universe: A Possible Solution to the Horizon and Flatness Problem. Physical Review D, 23, 347-356.
https://doi.org/10.1103/PhysRevD.23.347
[4]  La, D. and Steinhardt, P.J. (1989) Extended Inflationary Cosmology. Physical Review Letters, 62, 376-378.
https://doi.org/10.1103/PhysRevLett.62.376
[5]  Perlmutter, S., et al. (1999) Measurements of Ω and Λ from 42 High-Redshift Supernovae. The Astrophysical Journal, 517, 565-586.
https://doi.org/10.1086/307221
[6]  Riess, A.G., et al. (1998) Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. The Astronomical Journal, 116, 1009-1038.
https://doi.org/10.1086/300499
[7]  De Felice, A. and Tsujikawa, S. (2010) f(R) Theories. Living Reviews in Relativity, 13, Article No. 3.
https://doi.org/10.12942/lrr-2010-3
[8]  Sotiriou, T.P. and Faraoni, V. (2010) f(R) Theories of Gravity. Reviews of Modern Physics, 82, 451-497.
https://doi.org/10.1103/RevModPhys.82.451
[9]  Nojiri, S., Odintsov, S.D. and Sami, M. (2006) Dark Energy Cosmology from Higher-Order, String-Inspired Gravity, and Its Reconstruction. Physical Review D, 74, Article ID: 046004.
https://doi.org/10.1103/PhysRevD.74.046004
[10]  Cartier, C., Copeland, E.J. and Madden, R. (2000) The Graceful Exit in String Cosmology. JHEP, 1, 35.
https://doi.org/10.1088/1126-6708/2000/01/035
[11]  Brans, C. and Dicke, R.H. (1961) Mach’s Principle and a Relativistic Theory of Gravitation. Physical Review, 124, 925-935.
https://doi.org/10.1103/PhysRev.124.925
[12]  Maartens, R. and Koyama, K. (2010) Brane-World Gravity. Living Reviews in Relativity, 13, Article No. 5.
https://doi.org/10.12942/lrr-2010-5
[13]  Petrov, A.Yu. (2004) Introduction to Modified Gravity.
[14]  Clifton, T., Ferreira, P.G., Padilla, A. and Skordis, C. (2012) Modified Gravity and Cosmology. Physics Reports, 513, 1-189.
https://doi.org/10.1016/j.physrep.2012.01.001
[15]  Ishak, M. (2019) Testing General Relativity in Cosmology. Living Reviews in Relativity, 22, 1-204.
https://doi.org/10.1007/s41114-018-0017-4
[16]  Capozziello, S. and De Laurentis, M. (2011) Extended Theories of Gravity. Physics Reports, 509, 167-321.
https://doi.org/10.1016/j.physrep.2011.09.003
[17]  De Felice, A. and Tsujikawa, S. (2010) f(R) Theories. Living Reviews in Relativity, 13, Article No. 3.
https://doi.org/10.12942/lrr-2010-3
[18]  Lu, J. and Chee, G. (2016) Cosmology in Poincare Gauge Gravity with a Pseudoscalar Torsion. JHEP, 5, 24.
https://doi.org/10.1007/JHEP05(2016)024
[19]  Lu, J., Xu, L., Tan, H. and Gao, S. (2014) Extended Chaplygin Gas as a Unified Fluid of Dark Components in Varying Gravitational Constant Theory. Physical Review D, 89, Article ID: 063526.
https://doi.org/10.1103/PhysRevD.89.063526
[20]  Lu, J., Xu, Y. and Wu, Y. (2015) Cosmic Constraint on the Unified Model of Dark Sectors with or without a Cosmic String Fluid in the Varying Gravitational Constant Theory. The European Physical Journal C, 75, Article No. 473.
https://doi.org/10.1140/epjc/s10052-015-3691-3
[21]  Huang, Q.G. (2014) An Analytic Calculation of the Growth Index for f(R) Dark Energy Model. The European Physical Journal C, 74, Article No. 2964.
https://doi.org/10.1140/epjc/s10052-014-2964-6
[22]  Hohmann, M., Jarv, L., Kuusk, P., Randla, E. and Vilson, O. (2016) Post-Newtonian Parameter γ for Multiscalar-Tensor Gravity with a General Potential. Physical Review D, 94, Article ID: 124015.
https://doi.org/10.1103/PhysRevD.94.124015
[23]  Nojiri, S., Odintsov, S.D. and Oikonomou, V.K. (2017) Modified Gravity Theories on a Nutshell: Inflation, Bounce and Late-Time Evolution. Physics Reports, 692, 1-104.
https://doi.org/10.1016/j.physrep.2017.06.001
[24]  de la Cruz-Dombriz, A., Elizalde, E., Odintsov, S.D. and Saez-Gomez, D. (2016) Spotting Deviations from R2 Inflation. JCAP, 5, 60.
https://doi.org/10.1088/1475-7516/2016/05/060
[25]  Sotiriou, T.P. (2006) f(R) Gravity and Scalar-Tensor Theory. Classical and Quantum Gravity, 23, Article No. 5117.
https://doi.org/10.1088/0264-9381/23/17/003
[26]  Giacchini, B.L. and Shapiro, I.L. (2018) Light Bending in f(R) Extended Gravity Theories. Physics Letters B, 780, 54-60.
https://doi.org/10.1016/j.physletb.2018.02.055
[27]  De Laurentis, M., De Martino, I. and Lazkoz, R. (2018) Modified Gravity Revealed Along Geodesic Tracks. The European Physical Journal C, 78, Article No. 916.
https://doi.org/10.1140/epjc/s10052-018-6401-0
[28]  De Martino, I., Lazkoz, R. and De Laurentis, M. (2018) Analysis of the Yukawa Gravitational Potential in f(R) Gravity. I. Semiclassical Periastron Advance. Physical Review D, 97, Article ID: 104067.
https://doi.org/10.1103/PhysRevD.97.104067
[29]  Geng, C.Q., Lee, C.C. and Shen, J.L. (2015) Matter Power Spectra in Viable f(R) Gravity Models with Massive Neutrinos. Physics Letters B, 740, 285-290.
https://doi.org/10.1016/j.physletb.2014.11.061
[30]  Sefiedgar, A.S., Atazadeh, K. and Sepangi, H.R. (2009) Generalized Virial Theorem in Palatini f(R) Gravity. Physical Review D, 80, Article ID: 064010.
https://doi.org/10.1103/PhysRevD.80.064010
[31]  Faraoni, V. (2008) Palatini f(R) Gravity as a Fixed Point. Physics Letters B, 665, 135-138.
https://doi.org/10.1016/j.physletb.2008.06.002
[32]  Abbott, B.P., et al. (2016) Directly Comparing GW150914 with Numerical Solutions of Einstein’s Equations for Binary Black Hole Coalescence. Physical Review D, 94, Article ID: 064035.
[33]  Abbott, B.P., et al. (2017) GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters, 119, Article ID: 161101.
[34]  Corda, C. (2009) Interferometric Detection of Gravitational Waves: The Definitive Test for General Relativity. International Journal of Modern Physics D, 18, 2275-2282.
https://doi.org/10.1142/S0218271809015904
[35]  Sahni, V., Saini, T.D., Starobinsky, A.A. and Alam, U. (2003) Statefinder—A New Geometrical Diagnostic of Dark Energy. Soviet Journal of Experimental and Theoretical Physics Letters, 77, 201-206.
https://doi.org/10.1134/1.1574831
[36]  Alam, U., Sahni, V., Deep Saini, T. and Starobinsky, A.A. (2003) Exploring the Expanding Universe and Dark Energy Using the Statefinder Diagnostic. Monthly Notices of the Royal Astronomical Society, 344, 1057-1074.
https://doi.org/10.1046/j.1365-8711.2003.06871.x
[37]  Zhang, X. (2005) Statefinder Diagnostic for Holographic Dark Energy Model. International Journal of Modern Physics D, 14, 1597-1606.
https://doi.org/10.1142/S0218271805007243
[38]  Setare, M.R., Zhang, J. and Zhang, X. (2007) Statefinder Diagnosis in a Non-Flat Universe and the Holographic Model of Dark Energy. JCAP, 3, 7.
https://doi.org/10.1088/1475-7516/2007/03/007
[39]  Yi, Z.L. and Zhang, T.J. (2007) Statefinder Diagnostic for the Modified Polytropic Cardassian Universe. Physical Review D, 75, Article ID: 083515.
https://doi.org/10.1103/PhysRevD.75.083515
[40]  Komatsu, E., et al. (2009) Five-Year Wilkinson Microwave Anisotropy Probe Observations: Cosmological Interpretation. The Astrophysical Journal Supplement Series, 180, 330-376.
https://doi.org/10.1088/0067-0049/180/2/330
[41]  Ade, P.A.R., Aghanim, N., Arnaud, M., et al. (2016) Planck 2015 Results XIII. Cosmological Parameters. Astronomy & Astrophysics, 594, A13.
[42]  Riess, A.G., et al. (2009) A Redetermination of the Hubble Constant with the Hubble Space Telescope from a Differential Distance Ladder. The Astrophysical Journal, 699, 539-563.
https://doi.org/10.1088/0004-637X/699/1/539
[43]  Vollick, D.N. (2003) 1/R Curvature Corrections as the Source of the Cosmological Acceleration. Physical Review D, 68, Article ID: 063510.
https://doi.org/10.1103/PhysRevD.68.063510
[44]  Zhang, P. (2006) Testing Gravity against the Early Time Integrated Sachs-Wolfe Effect. Physical Review D, 73, Article ID: 123504.
https://doi.org/10.1103/PhysRevD.73.123504
[45]  Linder, E.V. (2009) Exponential Gravity. Physical Review D, 80, Article ID: 123528.
https://doi.org/10.1103/PhysRevD.80.123528
[46]  Bamba, K., Geng, C.G. and Lee, C.C. (2010) Cosmological Evolution in Exponential Gravity. JCAP, 8, 21.
https://doi.org/10.1088/1475-7516/2010/08/021
[47]  Lu, J., Wang, Y. and Zhao, X. (2019) Linearized Modified Gravity Theories and Gravitational Waves Physics in the GBD Theory. Physics Letters B, 795, 129-134.
https://doi.org/10.1016/j.physletb.2019.05.051
[48]  Lu, J., Wu, Y., Yang, W., Liu, M. and Zhao, X. (2019) The Generalized Brans-Dicke Theory and Its Cosmology. The European Physical Journal Plus, 134, Article No. 318.
https://doi.org/10.1140/epjp/i2019-12684-0
[49]  Lu, J., Li, J., Guo, H., Zhuang, Z. and Zhao, X. (2020) Linearized Physics and Gravitational-Waves Polarizations in the Palatini Formalism of GBD Theory. Physics Letters B, 811, Article ID: 135985.
https://doi.org/10.1016/j.physletb.2020.135985
[50]  Wei, H., Qi, H.-Y. and Ma, X.-P. (2012) Constraining f(T) Theories with the Varying Gravitational Constant. The European Physical Journal C, 72, Article No. 2117.
https://doi.org/10.1140/epjc/s10052-012-2117-8
[51]  Biesiada, M. and Malec, B. (2004) A New White Dwarf Constraint on the Rate of Change of the Gravitational Constant. Monthly Notices of the Royal Astronomical Society, 350, 644-648.
https://doi.org/10.1111/j.1365-2966.2004.07677.x
[52]  Benvenuto, O.G., et al. (2004) Asteroseismological Bound on G Ġ/G from Pulsating White Dwarfs. Physical Review D, 69, Article ID: 082002.
https://doi.org/10.1103/PhysRevD.69.082002
[53]  Verbiest, J.P.W., et al. (2008) Precision Timing of PSR J0437-4715: An Accurate Pulsar Distance, a High Pulsar Mass, and a Limit on the Variation of Newton’s Gravitational Constant. The Astrophysical Journal, 679, 675-680.
https://doi.org/10.1086/529576
[54]  Gaztanaga, E., et al. (2002) Bounds on the Possible Evolution of the Gravitational Constant from Cosmological Type-Ia Supernovae. Physical Review D, 65, Article ID: 023506.
https://doi.org/10.1103/PhysRevD.65.023506
[55]  Thorsett, S.E. (1996) The Gravitational Constant, the Chandrasekhar Limit, and Neutron Star Masses. Physical Review Letters, 77, 1432-1435.
https://doi.org/10.1103/PhysRevLett.77.1432
[56]  Guenther, D.B., Krauss, L.M. and Demarque, P. (1998) Testing the Constancy of the Gravitational Constant Using Helioseismology. The Astrophysical Journal, 498, 871-876.
https://doi.org/10.1086/305567
[57]  Williams, J.G., Turyshev, S.G. and Boggs, D.H. (2004) Progress in Lunar Laser Ranging Tests of Relativistic Gravity. Physical Review Letters, 93, Article ID: 261101.
https://doi.org/10.1103/PhysRevLett.93.261101

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133