全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

类石墨相氮化碳的制备与改性研究进展
Research Progress on Preparation and Modification of Graphitic Carbon Nitride

DOI: 10.12677/NAT.2022.123018, PP. 157-164

Keywords: 光催化,g-C3N4,制备方法,改性方法,研究进展
Photocatalysis
, g-C3N4, Preparation Method, Modification Method, Research Progress

Full-Text   Cite this paper   Add to My Lib

Abstract:

在过去的几十年中,各种光催化材料和技术的不断发展,为解决日益严重的环境污染问题提供了有效路径。类石墨相氮化碳(g-C3N4)作为一种优良的光催化剂,由于具有独特结构和物化性能,同时还具有合成便捷、性质稳定、原料易得以及清洁无毒等特点,已成为了研究的热点。但由于存在比表面积不大、可见光响应范围窄、光生载流子难分离等缺陷,使得g-C3N4在光催化等领域的应用上受到了很大程度上的限制。因此,研究者们不断寻找合适的方法对g-C3N4进行改性,以增强其光催化效率。本文结合国内外研究成果,介绍了g-C3N4的主要合成制备方法,并对不同改性方法的研究进展进行了总结,最后探讨了今后的研究重点及方向等。
In the past decades, the continuous development of various photocatalytic materials and technologies had provided an effective way to solve the increasingly serious environmental pollution problems. As an excellent photocatalyst, graphitic carbon nitride (g-C3N4) had become a research hotspot because of its unique structure and physicochemical properties, convenient synthesis, stable properties, easily available raw materials, cleanness, and non-toxicity. However, due to the defects of small specific surface area, narrow visible light response range, and difficult separation of photogenerated carri-ers, the application of g-C3N4 in photocatalysis and other fields had been extremely limited. Therefore, researchers were constantly looking for suitable methods to modify g-C3N4 to enhance its photocatalytic efficiency. In this paper, the main syn-thesis and preparation methods of g-C3N4 were introduced, and the re-search progress of different modification methods was summarized. Finally, the future research fo-cus and direction were discussed.

References

[1]  水博阳, 宋小三, 范文江. 光催化技术在水处理中的研究进展及挑战[J]. 化工进展, 2021, 40(S2): 356-363.
[2]  Li, J., Yuan, H., Zhang, W., Jin, B., Feng, Q., Huang, J. and Jiao, Z. (2022) Advances in Z-Scheme Semiconductor Photocatalysts for the Photoelectrochemical Applications: A Review. Carbon Energy, 4, 294-331.
https://doi.org/10.1002/cey2.179
[3]  Arai, H., Yamada, T., Eguchi, K. and Seiyama, T. (1986) Catalytic Combus-tion of Methane over Various Perovskite-Type Oxides. Applied Catalysis, 26, 265-276.
https://doi.org/10.1016/S0166-9834(00)82556-7
[4]  葛玉杰, 吴姣, 何志强, 王国华, 刘金香. g-C3N4基异质耦合光催化剂制备及在环境污染物去除领域的研究进展[J]. 材料工程, 2021, 49(4): 23-33.
[5]  Kato, H. and Kudo, A. (2001) Water Splitting into H2 and O2 on Alkali Tantalite Photocatalysts ATaO3 (A= Li, Na, and K). The Journal of Physical Chemistry B, 105, 4285-4292.
https://doi.org/10.1021/jp004386b
[6]  谢磊, 刘帅, 孙有为, 张健, 胡绍争. 石墨相氮化碳光催化剂的研究进展[J]. 石油化工高等学校学报, 2021, 34(6): 27-34.
[7]  王成, 黄红霞, 肖阳, 梁大铭. g-C3N4/双钙钛矿复合材料的制备及氧催化性能[J]. 无机化学学报, 2019, 35(2): 254-262.
[8]  尹璐. 钨酸铋的制备、改性以及光催化性能的研究[D]: [硕士学位论文]. 石家庄: 河北师范大学, 2017.
[9]  Wang, X., Maeda, K., Thomas, A., Takanabe, K. and Antonietti, M. (2009) A Metal-Free Polymeric Photocatalyst for Hydrogen Production from Water un-der Visible Light. Nature Materials, 8, 76-80.
https://doi.org/10.1038/nmat2317
[10]  桂明生, 王鹏飞, 袁东, 杨易坤. Bi2WO6/g-C3N4复合型催化剂的制备及其可见光光催化性能[J]. 无机化学学报, 2013, 29(10): 2057-2064.
[11]  焦玉娟, 曹慧, 耿仁勇, 潘璐, 吕雪川, 高肖汉. 石墨相氮化碳改性技术的研究进展[J]. 现代化工, 2016, 36(4): 23-28.
[12]  Li, H., Li, N., Wang, M., Zhao, B. and Fei, L. (2018) Synthesis of Novel and Stable g-C3N4-Bi2WO6 Hybrid Nanocomposites and Their Enhanced Photocatalytic Activity under Visible Light Irradiation. Royal Society Open Science, 5, Article ID: 171419.
https://doi.org/10.1098/rsos.171419
[13]  赖树锋, 肖开棒, 梁锦芝, 林锴淳, 许伟城, 江学顶. 石墨氮化碳光催化剂的制备及其改性研究进展[J]. 人工晶体学报, 2020, 49(4): 744-750.
[14]  柳璐, 张文, 王宇新. 石墨相氮化碳的可控制备及其在能源催化中的应用[J]. 化工学报, 2018, 69(11): 4577-4591.
[15]  Liu, A.Y., Cohen, M.L. (1989) Prediction of New Low Compressibility Solids. Science, 245, 841-842.
https://doi.org/10.1126/science.245.4920.841
[16]  Wang, X., Blechert, S. and Antonietti, M. (2012) Polymeric Graphitic Carbon Nitride for Heterogeneous Photocatalysis. Acs Catalysis, 2, 1596-1606.
https://doi.org/10.1021/cs300240x
[17]  Kroke, E. and Schwar, M. (2004) Novel Group 14 Nitrides. Coordination Chemistry Reviews, 248, 493-532.
https://doi.org/10.1016/j.ccr.2004.02.001
[18]  范乾靖, 刘建军, 于迎春, 左胜利. 新型非金属光催化剂——石墨型氮化碳的研究进展[J]. 化工进展, 2014, 33(5): 1185-1194.
[19]  孙卫华, 陆春华, 寇佳慧, 倪亚茹, 许仲梓. 富碳类石墨相氮化碳的制备及光催化性能[J]. 南京工业大学学报(自然科学版), 2017, 39(2): 1-5+30.
[20]  李军奇, 郝红娟, 周健, 崔明明, 孙龙, 袁欢. g-C3N4/g-C3N4异质结结构的制备及其光催化性能[J]. 陕西科技大学学报(自然科学版), 2016, 34(2): 59-63.
[21]  陶雪芬, 蒋雨涛, 魏晶晶, 金银秀, 王玉新. g-C3N4/AC的制备及其可见光催化活性研究[J]. 当代化工, 2017, 46(7): 1287-1289.
[22]  Jorge, A.B., Martin, D.J., Dhanoa, M.T.S., Rahman, A.S. and Mcmillan, P.F. (2013) H2 and O2 Evolution from Water Half-Splitting Reactions by Graphitic Carbon Nitride Materials. Journal of Physical Chem-istry C, 117, 7178-7185.
https://doi.org/10.1021/jp4009338
[23]  Bian, S.W., Ma, Z. and Song, W.G. (2009) Preparation and Characteriza-tion of Carbon Nitride Nanotubes and Their Applications as Catalyst Supporter. Journal of Physical Chemistry C, 113, 8668-8672.
https://doi.org/10.1021/jp810630k
[24]  沈谈笑, 张见玲, 江龙, 淡宜. 用聚苯乙烯软模板合成多孔石墨相氮化碳[J]. 化学研究与应用, 2017, 29(6): 873-877.
[25]  Bai, Y.J., Lue, B., Liu, Z.G., Li, L., Cui, D.L., Xu, X.G. and Wang, Q.L. (2003) Solvothermal Preparation of Graphite-Like C3N4 Nanocrystals. Journal of Crystal Growth, 247, 505-508.
https://doi.org/10.1016/S0022-0248(02)01981-4
[26]  Khabashesku, V.N., Zimmerman, J.L. and Margrave, J.L. (2000) Powder Synthesis and Characterization of Amorphous Carbon Nitride. Chemistry of Materials, 12, 3264-3270.
https://doi.org/10.1021/cm000328r
[27]  Tragl, S., Gibson, K., Glaser, J., Duppel, V., Simon, A. and Meyer, H.J. (2007) Template Assisted Formation of Micro- and Nanotubular Carbon Nitride Materials. Solid State Communications, 141, 529-534.
https://doi.org/10.1016/j.ssc.2006.10.008
[28]  齐雪梅, 华双静, 李鸽, 王蕾. 高效可见光催化剂g-C3N4的制备及其催化性能研究[J]. 上海电力学院学报, 2016, 32(4): 322-326.
[29]  蒋克望. 石墨相氮化碳(g-C3N4)的复合改性及其光催化性能研究[D]: [硕士学位论文]. 南京: 南京理工大学, 2016.
[30]  Alibart, F., Drouhin, O.D., Debiemme-Chouvy, C. and Benlahsen, M. (2008) Rela-tionship between the Structure and the Optical and Electrical Properties of Reactively Sputtered Carbon Nitride Films. Solid State Communications, 145, 392-396.
https://doi.org/10.1016/j.ssc.2007.11.025
[31]  Ding, Y., Maitra, S., Wang, C.H., Zheng, R.T., Zhang, M.Y., Barakat, T., Roy, S., Liu, J., Li, Y., Tawfique, H.T. and Su, B.L. (2022) Hy-drophilic Bi-Functional B-Doped g-C3N4 Hierarchical Architecture for Excellent Photocata-lytic H2O2 Production and Photoelectrochemical Water Splitting. Journal of Energy Chemistry, 70, 236-247.
https://doi.org/10.1016/j.jechem.2022.02.031
[32]  Gorai, D.K. and Kundu, T.K. (2020) First Principle Study of Na and P Co-Doped Heptazine Based Monolayer g-C3N4. Materials Science Forum, 978, 369-376.
https://doi.org/10.4028/www.scientific.net/MSF.978.369
[33]  Maeda, K., Kuriki, R., Zhang, M., Wang, X. and Ishitani, O. (2014) The Effect of the Pore-Wall Structure of Carbon Nitride on Photocatalytic CO2, Reduction Under Visible Light. Journal of Materials Chemistry A, 2, 15146-15151.
https://doi.org/10.1039/C4TA03128H
[34]  周锋, 詹溯. 石墨相氮化碳杂化提高钼酸铋光催化材料降解活性[J]. 稀有金属材料与工程, 2015, 44(S1): 644-646.
[35]  Yan, J.Q., Wu, G.J., Guan, N.J. and Li, L.D. (2013) Synergetic Pro-motion of the Photocatalytic Activity of TiO2 by Gold Deposition under UV-Visible Light Irradiation. Chemical Com-munications, 49, 11767-11769.
https://doi.org/10.1039/c3cc46832a

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133