全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

深度学习能解决美式障碍期权定价中的“维度诅咒”问题吗?——基于行为期权的视角
Can Deep Learning Method Solve “Curse of Dimesionality” in American Barrier Option Pricing?—Based on the Perspective of Behavioral Option

DOI: 10.12677/ORF.2022.123115, PP. 1093-1101

Keywords: 深度学习,障碍期权,美式期权,行为资产定价模型
Deep Learning Method
, Barrier Options, American Options, Behavioral Asset Pricing Model

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了刻画投资者行为对金融资产价格的影响,本文采用行为资产定价模型来刻画风险资产价格的动态变化,以深度学习方法为美式障碍期权定价,并与传统的最小二乘蒙特卡洛法进行比较。数值实验结果表明,深度学习法不仅在单资产表现出色,而且在高维资产定价上仍然具有高精度、高效率的特点,避免了传统方法因“维度爆炸”导致无法定价的问题。本文的研究结论完善了行为资产模型下的期权定价理论体系,为其他产品的定价提供借鉴与思路。
In order to capture the features of investor behavior on financial asset prices, in this paper, we use behavioral asset pricing model to describe the dynamic change of risk asset price, use deep learning method to price American barrier options, and compare it with traditional least squares Monte Carlo approach. Numerical experimental result shows that deep learning method not only performs well in single assets, but also has the characteristics of high precision and high efficiency in high-dimensional asset pricing, avoiding the problem that traditional methods cannot price due to “dimension explosion”. Our research results improve the theoretical system of option pricing under the behavioral asset pricing model, and provide reference and ideas for the pricing of other products.

References

[1]  Hull, J.C. (2003) Options Futures and Other Derivatives. Pearson Education India, Noida.
[2]  Black, F. and Scholes, M. (2019) The Pricing of Options and Corporate Liabilities. In: Crouhy, M., Galai, D. and Wiener, Z., Eds., World Scientific Reference on Contingent Claims Analysis in Corporate Finance: Volume 1: Foundations of CCA and Equity Valuation, World Scientific, Singapore, 3-21.
https://doi.org/10.1142/9789814759588_0001
[3]  余湄, 程志勇, 邓军, 等. 一个新的期权定价方法: 基于混合次分数布朗运动的新视角[J]. 系统工程理论与实践, 2021, 41(11): 2761-2776.
[4]  Shefrin, H. (2008) A Behavioral Approach to Asset Pricing. Elsevier, Amsterdam.
[5]  孙有发, 邱梓杰, 姚宇航, 刘彩燕. 基于深度学习算法的行为期权定价[J]. 系统管理学报, 2021, 30(4): 697-708.
[6]  李冰清, 张天齐. 结构化金融产品中的障碍期权定价[J]. 南开学报 (哲学社会科学版), 2021, 284(6): 42-52.
[7]  邢晓芳, 王前. 欧式障碍期权定价的数值方法[J]. 现代经济: 现代物业中旬刊, 2015(1): 40.
[8]  马黎政. 美式障碍期权的数值定价方法研究[D]: [硕士学位论文]. 重庆: 重庆大学, 2006.
[9]  林杨珺. 美式障碍期权价格的两种快速估值方法研究[D]: [硕士学位论文]. 广州: 华南理工大学, 2018.
[10]  张利花, 张卫国, 许文坤. 美式障碍期权定价的总体最小二乘拟蒙特卡罗模拟方法[J]. 数理统计与管理, 2013, 32(5): 923-930.
[11]  Han, J., Jentzen, A. and Weinan, E (2018) Solving High-Dimensional Partial Differential Equations Using Deep Learning. Proceedings of the National Academy of Sciences of the United States of America, 115, 8505-8510.
https://doi.org/10.1073/pnas.1718942115
[12]  Blechschmidt, J. and Ernst, O.G. (2021) Three Ways to Solve Par-tial Differential Equations with Neural Networks—A Review. GAMM-Mitteilungen, 44, Article ID: e202100006.
https://doi.org/10.1002/gamm.202100006
[13]  Chen, Y. and Wan, J.W. (2021) Deep Neural Network Framework Based on Backward Stochastic Differential Equations for Pricing and Hedging American Options in High Dimensions. Quantitative Finance, 21, 45-67.
https://doi.org/10.1080/14697688.2020.1788219
[14]  Liang, L. and Cai, X. (2022) Time-Sequencing European Options and Pricing with Deep Learning-Analyzing Based on Interpretable ALE Method. Expert Systems with Applications, 187, Article ID: 115951.
https://doi.org/10.1016/j.eswa.2021.115951
[15]  Lu, L., Meng, X., Mao, Z., and Em Karniadakis, G. (2021) DeepXDE: A Deep Learning Library for Solving Differential Equations. SIAM Review, 63, 208-228.
https://doi.org/10.1137/19M1274067
[16]  Becker, S., Cheridito, P. and Jentzen, A. (2019) Deep Optimal Stopping. Journal of Machine Learning Research, 20, 74.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133