全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

TiO2/g-C3N4/Fe2O3复合光催化剂的制备、表征及其在模拟太阳光下光催化还原CO2性能
Preparation and Characterization of TiO2/g-C3N4/Fe2O3 Composite Catalyst and Its Photocatalytic Performance of CO2 Reduction under a Xenon Lamp

DOI: 10.12677/MS.2022.128086, PP. 781-792

Keywords: 物理化学,CO2,光催化,TiO2/g-C3N4/Fe2O3,甲醇,乙醇
Physical Chemistry
, CO2, Photocatalysis, TiO2/g-C3N4/Fe2O3, CH3OH, Alcohol

Full-Text   Cite this paper   Add to My Lib

Abstract:

光催化还原CO2是改善环境和缓解温室效应的有效方式之一,TiO2、g-C3N4、Fe2O3是目前最具有应用前景的紫外/可见光催化剂。本文采用水热合成法,摩尔比为1:1:1,制备TiO2/g-C3N4/Fe2O3三元复合光催化剂,并采用相同方法和比例制备了二元光催化剂g-C3N4/Fe2O3、TiO2/g-C3N4、TiO2/Fe2O3。通过EDS-SEM、FT-IR、XRD、UV-vis对其形貌、结构和光学性质进行表征,考察了三元和二元光催化剂在氙灯光源(模拟太阳光)的照射下光催化还原CO2的效率。结果表明:三元光催化剂呈纳米级复合在一起,其表面Ti、C、N、Fe、O的原子含量分别为2.91%、18.08%、28.71%、10.40%、39.90%;复合后的三元光催化剂中的TiO2为锐钛型,Fe2O3属于α-Fe2O3;复合三元光催化剂的主要光吸收区域由紫外光区扩宽到了可见光区,约为200~607 nm之间,产生多个带隙,分别为1.64 eV、1.70 eV、2.02 eV,在整个紫外–可见波段有多个吸收,能够实现对光源的充分利用。三元光催化剂光催化CO2反应1 h产生醇的效率为2.0557 μmol?g?1?h?1;光反应6 h的平均效率为0.8114 μmol?g?1?h?1,随着辐照时间的延长,反应速率变慢,因此单次光催化反应时间不宜过长。
Photocatalytic reduction of CO2 is one of the most effective ways to improve the environment and alleviate the greenhouse effect. TiO2, g-C3N4 and Fe2O3 are the most promising UV and/or visible light catalysts at present. In this paper, TiO2/g-C3N4/Fe2O3 ternary photocatalyst was prepared by hydrothermal synthesis method with water as the medium and molar ratio of 1:1:1. The binary photocatalysts g-C3N4/Fe2O3, TiO2/g-C3N4 and TiO2/Fe2O3 were prepared by the same method and proportion. The morphology, structure and optical properties were characterized by EDS-SEM, FT-IR, XRD and UV-vis. The efficiency of ternary and binary photocatalysts in the photocatalytic reduction of CO2 under the irradiation of a xenon lamp (simulated sunlight) was investigated, and the products were characterized by chemical and instrumental methods. EDS-SEM showed that the ternary photocatalyst was nanocomposite, and the atomic contents of Ti, C, N, Fe and O on the surface were 2.91, 18.08, 28.71, 10.40 and 39.90, respectively. By comparing the IR spectra of monadic, binary and ternary photocatalysts, the results show that the ternary photocatalyst still retains the molecular group of monadic photocatalyst. XRD showed that TiO2/g-C3N4/Fe2O3 still retained a monadic molecular structure. According to FT-IR and XRD patterns, TiO2 and

References

[1]  Wang, X., Wang, Y., Gao, M., Shen, J., Pu, X., Zhang, Z., et al. (2020) BiVO4/Bi4Ti3O12 Heterojunction Enabling Efficient Photocatalytic Reduction of CO2 with H2O to CH3OH and CO. Applied Catalysis B: Environmental, 270, Article ID: 118876.
https://doi.org/10.1016/j.apcatb.2020.118876
[2]  唐兰勤, 贾茵, 朱志尚, 吴聪萍, 周勇, 邹志刚. 光催化二氧化碳还原研究进展[J]. 物理学进展, 2021, 41(6): 254-263.
[3]  Kumar, B., Llorente, M., Froehlich, J., Dang, T., Sathrum, A. and Kubiak, C.P. (2012) Photochemical and Photoelectrochemical Reduction of CO2. Annual Review of Physical Chemistry, 63, 541-569.
https://doi.org/10.1146/annurev-physchem-032511-143759
[4]  汪君. 无机多孔纳米复合吸附剂的制备与表征[D]: [硕士学位论文]. 南京: 南京理工大学, 2012.
[5]  Ismael, M. (2020) A Review on Graphitic Carbon Nitride (g-C3N4) Based Nanocomposites: Synthesis, Categories, and Their Application in Photo Catalysis. Journal of Alloys and Compounds, 846, Article ID: 156446.
https://doi.org/10.1016/j.jallcom.2020.156446
[6]  张轩, 黄耀桢, 邵秀丽, 李晶, 李丰, 岳秦, 王政. 结构化铜基催化剂电化学还原CO2为多碳产物研究进展[J]. 化工进展, 2021,40(7): 3736-3746.
[7]  Li, B., Sun, L.Q., Bian, J., Sun, N., Chen, L., Li, Z., et al. (2020) Controlled Synthesis of Novel Z-Scheme Iron Phthalocyaninepomus WO3 Nanocomposites as Efficient Photocatalysts for CO2 Reduction. Applied Catalysis B: Environmental, 270, Article ID: 118849.
https://doi.org/10.1016/j.apcatb.2020.118849
[8]  Zhang, X.H., Zhang, L, Deng, B., Jin, J., Xu, C., Zhang, Y., et al. (2020) Visible Light-Responding Perovskite Oxide Catalysts for Photo Thermochemical CO2 Reduction. Catalysis Communications, 138, Article ID: 105955.
https://doi.org/10.1016/j.catcom.2020.105955
[9]  党永强, 李博妮, 李可可, 张建兰, 冯香钰, 张亚婷. 铁基催化剂光催化还原 CO2研究进展[J].化工学报, 2021, 72(10): 5016-5027.
[10]  周威, 郭君康, 申升, 潘金波, 唐杰, 陈浪, 区泽堂, 尹双凤. 光电催化二氧化碳还原研究进展[J]. 物理化学学报, 2020, 36(3): 120-130.
[11]  Akple, M.S., Low, J., Liu, S., Cheng, B., Yu, J. and Ho, W. (2016) Fabrication and Enhanced CO2 Reduction Performance of N-Self-Doped TiO2 Microsheet Photo Catalyst by Bi-Cocatalyst Modification. Journal of CO2 Utilization, 16, 442-449.
https://doi.org/10.1016/j.jcou.2016.10.009
[12]  何芳. g-C3N4的改性及光催化性能研究[D]: [博士学位论文]. 哈尔滨: 哈尔滨工业大学, 2017.
[13]  Li, Z., Wang, S., Wu, J., et al. (2022) Recent Progress in Defective TiO2 Photocatalysts for Energy and Environmental Applications. Renewable and Sustainable Energy Reviews, 156, Article ID: 111980.
https://doi.org/10.1016/j.rser.2021.111980
[14]  孟佳琪. 表界面调控提升石墨相氮化碳光催化氧化有机污染物性能研究[D]: [博士学位论文]. 长春: 东北师范大学, 2021.
[15]  谢若兰, 何欢, 杨世利, 刘权锋, 王艺蒸, 余江. TiO2-g-C3N4/Bi2O3复合异质结构催化材料在水处理中的应用[J]. 复合材料学报, 2021, 38(9): 3036-3044.
[16]  Du, J., Lai, X., Yang, N., Zhai, J., Kisailus, D., Su, F., et al. (2011) Hierarchically Ordered Macr-Mesoporous TiO2-Graphene Composite Films: Improved Mass Transfer, Reduced Charge Recombination, and Their Enhanced Photocatalytic Activities. ACS Nano, 5, 590-596.
https://doi.org/10.1021/nn102767d
[17]  Guo, H., Chen, M., Zhong, Q., Wang, Y., Ma, W. and Ding, J. (2019) Synthesis of Z-Scheme α-Fe2O3/g-C3N4 Composite with Enhanced Visible-Light Photocatalytic Reduction of CO2 to CH3OH. Journal of CO2 Utilization, 33, 233-241.
https://doi.org/10.1016/j.jcis.2022.04.003
[18]  Wang, X., Liang, F., Gu, H., Wu, S., Cao, Y., Lyu, G., et al. (2022) In Situ Synthesized α-Fe2O3/BCN Heterojunction for Promoting Photocatalytic CO2 Reduction Performance. Journal of Colloid and Interface Science, 621, 311-320.
[19]  Nguyen, T., Dinh, T., Pham, M., Minh, H.B., Thi, N.Q.N. and Dinh, B.N. (2022) Photoreduction of CO2 to CH4 over Efficient Z-Scheme-Fe2O3/g-C3N4 Composites. Journal of Analytical Methods in Chemistry, 2022, Article ID: 1358437.
https://doi.org/10.1155/2022/1358437
[20]  Rajendran, R., Vignesh, S., Raj, V., Palanivel, B., Mossad Ali, A., Sayed, M.A., et al. (2022) Designing of TiO2/α-Fe2O3 Coupled g-C3N4 Magnetic Heterostructure Composite for Efficient Z-Scheme Photo-Degradation Process under Visible Light Exposures. Journal of Alloys and Compounds, 894, Article ID: 162498.
https://doi.org/10.1016/j.jallcom.2021.162498
[21]  汪忠柱, 孙涛, 李民权. 导电聚苯胺/γ-Fe2O3纳米复合物的红外与微波吸收性能[J]. 磁性材料及器件, 2008, 31(1): 14-17+31.
[22]  李鹏辉. 掺杂, 复合改性石墨相氮化碳光催化还原CO2研究[D]: [硕士学位论文]. 成都: 西南石油大学, 2018.
[23]  李强, 霍丽华, 高山, 赵经贵. 准立方体α-Fe2O3纳米薄膜的紫外和红外光谱研究[J]. 光散射学报, 2003, 15(4): 297-299.
[24]  Saravanakumar, K., Karthik, R., Chen, S.M., Vinoth Kumar, J., Prakash, K. and Muthuraj, V. (2017) Construction of Novel Pd/CeO2/g-C3N4 Nanocomposites as Efficient Visible-Light Photocatalysts for Hexavalent Chromium Detoxification. Journal of Colloid and Interface Science, 504, 514-526.
https://doi.org/10.1016/j.jcis.2017.06.003
[25]  Balu, S., Velmurugan, S., Palanisamy, S., Chen, S.-W., Velusamy, V., Yang, T.C.K., et al. (2019) Synthesis of α-Fe2O3 Decorated g-C3N4/ZnO Ternary Z-Scheme Photocatalyst for Degradation of Tartrazine Dye in Aqueous Media. Journal of the Taiwan Institute of Chemical Engineers, 99, 258-267.
https://doi.org/10.1016/j.jtice.2019.03.011

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133