The main goal of this paper is to use the enlargement of filtration framework for pricing zero-coupon CAT bonds. For this purpose, we develop two models where the trigger event time is perfectly covered by an increasing sequence of stopping times with respect to a reference filtration. Hence, depending on the nature of these stopping times the trigger event time can be either accessible or totally inaccessible. When some of these stopping times are not predictable, the trigger event time is totally inaccessible, and very nice mathematical computations can be derived. When the stopping times are predictable, the trigger event time is accessible, and this case would be a meaningful choice for Model 1 from a practical point of view since features like seasonality are already captured by some quantities such as the stochastic intensity of the Poisson process. We compute the main tools for pricing the zero-coupon CAT bond and show that our constructions are more general than some existing models in the literature. We obtain some closed-form prices of zero-coupon CAT bonds in Model 2 so we give a numerical illustrative example for this latter.
References
[1]
Burnecki, K. and Kukla, G. (2003) Pricing of Zero-Coupon and Coupon CAT Bonds. Applicationes Mathematicae, 30, 315-324. https://doi.org/10.4064/am30-3-6
[2]
Hrdle, W. and Cabrera, B. (2010) Calibrating CAT Bonds for Mexican Earthquakes. Journal of Risk and Insurance, 77, 625-650. https://doi.org/10.1111/j.1539-6975.2010.01355.x
[3]
Ma, Z., Ma, C. and Xiao, S. (2017) Pricing Zero-Coupon Catastrophe Bonds Using EVT with Doubly Stochastic Poisson Arrivals. Discrete Dynamics in Nature and Society, 2017, Article ID: 3279647. https://doi.org/10.1155/2017/3279647
[4]
Schmidt, T. (2014) Catastrophe Insurance Modeled by Shot-Noise Processes. Risks, 2, 3-24. https://doi.org/10.3390/risks2010003
[5]
Shao, J., Papaioannou, A. and Pantelous, A. (2016) Pricing and Simulating CAT Bonds in a Markov-Dependent Environment. Applied Mathematics and Computation, 309, 68-84. https://doi.org/10.1016/j.amc.2017.03.041
[6]
Mistry, H. and Lombardi, D. (2022) Pricing Risk-Based Catastrophe Bonds for Earthquakes at an Urban Scale. Scientific Reports, 12, Article No. 9729. https://doi.org/10.1038/s41598-022-13588-1
[7]
Ma, Z. and Ma, C. (2013) Pricing Catastrophe Risk Bonds: A Mixed Approximation Method. Insurance: Mathematics and Economics, 52, 243-254. https://doi.org/10.1016/j.insmatheco.2012.12.007
[8]
Jarrow, R. (2010) A Simple Robust Model for CAT Bond Valuation. Finance Research Letters, 7, 72-79. https://doi.org/10.1016/j.frl.2010.02.005
[9]
Brmaud, P. and Yor, M. (1978) Changes of Filtrations and of Probability Measures. Zeitschrift Fr Wahrscheinlichkeitstheorie Und Verwandte Gebiete, 45, 269-295. https://doi.org/10.1007/BF00537538
[10]
Gueye, D. and Jeanblanc, M. (2021) Generalized Cox Model for Default Times. https://hal.archives-ouvertes.fr/hal-03264864
[11]
Jiao, Y. and Li, S. (2018) Modeling Sovereign Risks: From a Hybrid Model to the Generalized Density Approach. Mathematical Finance, 28, 240-267. https://doi.org/10.1111/mafi.12136
[12]
He, S., Wang, J. and Yan, J. (2018) Semimartingale Theory and Stochastic Calculus. CRC Press, Boca Raton. https://doi.org/10.1201/9780203739907
[13]
Jeanblanc, M., Yor, M. and Chesney, M. (2009) Mathematical Methods for Financial Markets. Springer Science and Business Media, Berlin. https://doi.org/10.1007/978-1-84628-737-4
[14]
Azéma, J. (1972) Quelques applications de la théorie générale des processus. I. Inventiones Mathematicae, 18, 293-336. https://doi.org/10.1007/BF01389817
[15]
Nikeghbali, A. (2006) An Essay on the General Theory of Stochastic Processes. Probability Surveys, 3, 345-412. https://doi.org/10.1214/154957806000000104
[16]
Aksamit, A. and Jeanblanc, M. (2017) Enlargement of Filtration with Finance in View. Springer, Berlin. https://doi.org/10.1007/978-3-319-41255-9
[17]
Jeulin, T. and Yor, M. (1978) Grossissement d’une filtration et semi-martingales: Formules explicites. Séminaire de probabilités de Strasbourg, 12, 78-97. https://doi.org/10.1007/BFb0064597
[18]
Yor, M. (1978) Grossissement d’une filtration et semi-martingales: Thormes gnraux. Séminaire de probabilités de Strasbourg, 12, 61-69. https://doi.org/10.1007/BFb0064595
[19]
Bielecki, T.R. and Rutkowski, M. (2002) Credit Risk: Modeling, Valuation and Hedging. Springer, Berlin.
[20]
Baryshnikov, Y., Mayo, A. and Taylor, D.R. (2001) Pricing of CAT Bonds.
[21]
Jeanblanc, M. and Li, L. (2020) Characteristics and Constructions of Default Times. SIAM Journal on Financial Mathematics, 11, 720-749. https://doi.org/10.1137/19M1274912
[22]
Jacobsen, M. and Gani, J. (2006) Point Process Theory and Applications: Marked Point and Piecewise Deterministic Processes. Springer, Berlin.
[23]
Schmidt, T. (2017) Shot-Noise Processes in Finance. In: Ferger, D., et al., Eds., From Statistics to Mathematical Finance, Springer, Berlin, 367-385. https://doi.org/10.1007/978-3-319-50986-0_18
[24]
Asmussen, S., Jensen, J.L. and Rojas-Nandayapa, L. (2016) On the Laplace Transform of the Lognormal Distribution. Methodology and Computing in Applied Probability, 18, 441-458. https://doi.org/10.1007/s11009-014-9430-7
[25]
Miles, J. (2018) The Laplace Transform of the Lognormal Distribution.
[26]
Corless, R., Gonnet, G., Hare, D., Jeffrey, D. and Knuth, D. (1996) On the LambertW Function. Advances in Computational Mathematics, 5, 329-359. https://doi.org/10.1007/BF02124750
[27]
Kotz, S. (2006) On the Laplace Transform of the Pareto Distribution. Queueing Systems, 54, 243-244. https://doi.org/10.1007/s11134-006-0299-1
[28]
Whittaker, E. (1903) An Expression of Certain Known Functions as Generalized Hypergeometric Functions. Bulletin of the American Mathematical Society, 10, 125-134. https://doi.org/10.1090/S0002-9904-1903-01077-5
[29]
Scherer, M., Schmid, L. and Schmidt, T. (2012) Shot-Noise Driven Multivariate Default Models. European Actuarial Journal, 2, 161-186. https://doi.org/10.1007/s13385-012-0059-z