This study was conducted at Laquintinie Hospital during the period between September 2021 and April 2022. The total number of cases who came to donate blood was 150 donors aged 18 to 60 years; 48 were excluded for several reasons. Several examinations were conducted for participants that were accepted for a study (n = 102 [2 (2.0%) were women and 100 (98.0%) men]), the prevalence of SARS-CoV-2 in nasopharyngeal samples was 11.8%. The mean CD4 count was 763.23 ± 194.61 cells/μl with endpoints [250 - 1400] cells/μl. IgG antibodies were present in 62.75% of cases. No statistically significant relation was found between SARS-CoV-2 carriage and IgG level or CD4 level (p = 0.850 & 0.056). Concerning the blood group, 57.3% (58) of the donors were of blood group O Rhesus positive; 19.4% (20) of blood type A Rhesus positive; and 2.9% were of blood group A Rhesus negative. Pupils and students represented 35.3% of our population, followed by employees at 25.5%. The SARS-CoV-2 positivity rate was 11.8% (n = 12). The transfusion transmitted infections (TTI) rate was 12.8% with 1.2% (1) positive HIV serologies, 5.8% (6) positive for HBsAg, 3.9% (4) for HCVAb, and 1.9% (2) positive TPA.
References
[1]
Cascella, M., Rajnik, M., Aleem, A., Dulebohn, S.C. and Di Napoli, R. (2022) Features, Evaluation, and Treatment of Coronavirus (COVID-19). StatPearls. StatPearls Publishing; Treasure Island. http://www.ncbi.nlm.nih.gov/books/NBK554776/
[2]
Wang, Y., Han, W., Pan, L., Wang, C., Liu, Y., et al. (2020) Impact of COVID-19 on Blood Centres in Zhejiang Province China. Vox Sanguinis, 115, 502-506.
https://pubmed.ncbi.nlm.nih.gov/32347566/
[3]
Franchini, M., Farrugia, A., Velati, C., Zanetti, A., Romanò, L., Grazzini, G., et al. (2020) The Impact of the SARS-CoV-2 Outbreak on the Safety and Availability of Blood Transfusions in Italy. Vox Sanguinis, 115, 603-605.
https://pubmed.ncbi.nlm.nih.gov/32240543/
[4]
Maghsudlu, M., Eshghi, P., Amini Kafi-Abad, S., Sedaghat, A., Ranjbaran, H., Mohammadi, S., et al. (2021) Blood Supply Sufficiency and Safety Management in Iran during the COVID-19 Outbreak. Vox Sanguinis, 116, 175-180.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7537134/
[5]
Silva-Malta, M.C.F., Rodrigues, D.O.W., Chaves, D.G., Magalhães, N.N.S., Ribeiro, M.A., et al. (2021) Impact of COVID-19 in the Attendance of Blood Donors and Production on a Brazilian Blood Centres. Transfusion Medicine, 31, 206-212.
https://pubmed.ncbi.nlm.nih.gov/33118220/
[6]
Pagano, M.B., Hess, J.R., Tsang, H.C., Staley, E., Gernsheimer, T., et al. (2020) Prepare to Adapt: Blood Supply and Transfusion Support during the First 2 Weeks of the 2019 Novel Coronavirus (COVID-19) Pandemic Affecting Washington State. Transfusion, 60, 908-911. https://pubmed.ncbi.nlm.nih.gov/32198754/
[7]
Organisation mondiale de la Santé (2021) Maintien d’un approvisionnement en sang sûr et suffisant et collecte de plasma de convalescent dans le contexte de la pandémie de COVID-19: Orientations provisoires, 17 février 2021. Report No. WHO/2019-nCoV/BloodSupply/2021.1. Organisation mondiale de la Santé, Geneva.
https://apps.who.int/iris/handle/10665/340339
[8]
Cho, H.J., Koo, J.W., Roh, S.K., Kim, Y.K., Suh, J.S., Moon, J.H., et al. (2020) COVID-19 Transmission and Blood Transfusion: A Case Report. Journal of Infection and Public Health, 13, 1678-1679.
https://pubmed.ncbi.nlm.nih.gov/32405329/
[9]
Luzzi, J.R., Navarro, R. and Dinardo, C.L. (2021) COVID-19: Further Evidence of No Transfusion Transmission. Transfusion and Apheresis Science, 60, Article ID: 102961. https://pubmed.ncbi.nlm.nih.gov/33077347/
[10]
Kwon, S.Y., Kim, E.J., Jung, Y.S., Jang, J.S. and Cho, N.S. (2020) Post-Donation COVID-19 Identification in Blood Donors. Vox Sanguinis, 115, 601-602.
https://pubmed.ncbi.nlm.nih.gov/32240537/
[11]
Lee, C.K., Leung, J.N.S., Cheng, P., Lung, D.C., To, K.K.W. and Tsang, D.N.C. (2021) Absence of SARS-CoV-2 Viraemia in a Blood Donor with COVID-19 Post-Donation. Transfusion Medicine, 31, 223-224.
https://pubmed.ncbi.nlm.nih.gov/33015920/
[12]
Cappy, P., Candotti, D., Sauvage, V., Lucas, Q., Boizeau, L., Gomez, J., et al. (2020) No Evidence of SARS-CoV-2 Transfusion Transmission Despite RNA Detection in Blood Donors Showing Symptoms after Donation. Blood, 136, 1888-1891.
https://pubmed.ncbi.nlm.nih.gov/32871595/
[13]
Tay, M.Z., Poh, C.M., Renia, L., MacAry, P.A. and Ng, L.F.P. (2020) The Trinity of COVID-19: Immunity, Inflammation and Intervention. Nature Reviews Immunology, 20, 363-374. https://pubmed.ncbi.nlm.nih.gov/32346093/
[14]
Crotty, S. (2019) T Follicular Helper Cell Biology: A Decade of Discovery and Diseases. Immunity, 50, 1132-1148. https://pubmed.ncbi.nlm.nih.gov/31117010/
[15]
Grifoni, A., Weiskopf, D., Ramirez, S.I., Mateus, J., Dan, J.M., Moderbacher, C.R., et al. (2020) Targets of T Cell, Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell, 181, 1489-501.e15.
https://pubmed.ncbi.nlm.nih.gov/32473127/
[16]
Ni, L., Ye, F., Cheng, M.L., Feng, Y., Deng, Y.Q., Zhao, H., et al. (2020) Detection of SARS-CoV-2-Specific Humoral and Cellular Immunity in COVID-19 Convalescent Individuals. Immunity, 52, 971-977.e3.
https://pubmed.ncbi.nlm.nih.gov/32413330/
[17]
Weiskopf, D., Schmitz, K.S., Raadsen, M.P., Grifoni, A., Okba, N.M.A., et al. (2020) Phenotype and Kinetics of SARS-CoV-2-Specific T Cells in COVID-19 Patients with Acute Respiratory Distress Syndrome. Science Immunology, 5, Article No. eabd2071. https://pubmed.ncbi.nlm.nih.gov/32591408/
[18]
Daniel, W.W. (1999) Biostatistics: A Foundation for Analysis in the Health Sciences. 7th Edition, John Wiley & Sons, New York.
https://books.google.fr/books?hl=fr&lr=&id=PON1DwAAQBAJ&oi=fnd&pg=PA3&dq=Daniel+WW,+editor.+7th+ed.+New+York:+John+Wiley+%26+Sons%3B+1999.+Biostatistics:+a+foundation+for+analysis+in+the+health+sciences&ots=a7-AdVknPy&sig=wSuPlsm5svMz55059t7eY4Q9ppk#v=onepage&q&f=false
[19]
MINSANTE (Ministère de la Santé Publique) and CCOUSP (Centre de Coordination des Opérations d’Urgence de Santé Publique) (2021) Rapport de situation COVID-19.
https://www.ccousp.cm/wp-content/uploads/2021/12/CMR-COVID19-SITREP88.pdf
[20]
Fohoue, A.M., Sack, F.N., Fossi, C.T., Fossi, A. and Bassong, Y.O.M. (2019) Prévalence des Infections Transmissibles par Transfusion Sanguine chez les Donneurs de Sang à l’Hôpital Central de Yaoundé—Cameroun. Health Sciences and Disease, 20, 23-28. https://www.hsd-fmsb.org/index.php/hsd/article/view/1377
[21]
Tagny, C.T., Murphy, E.L., Lefrère, J.J. and de Francophone, G. (2014) Recherches transfusionnelles en a le groupe de recherches transfusionnelles d’Afrique francophone: bilan des cinq premières années. Transfusion clinique et biologique: Journal de la Societe francaise de transfusion sanguine, 21, 37-42.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5049886/
[22]
Hadj Taieb, R., Mahjoub, S., Ben Amara, N., Chakroun, A., Baccouche, H. and Ben Romdhane, N. (2021) Groupe Sanguin ABO et COVID-19. Transfusion Clinique et Biologique, 28, S116.
https://pesquisa.bvsalud.org/global-literature-on-novel-coronavirus-2019-ncov/resource/pt/covidwho-1492704
[23]
World Health Organization (n.d.) Cameroon: WHO Coronavirus Disease (COVID-19) Dashboard with Vaccination Data. https://covid19.who.int/region/afro/country/cm
[24]
Alix, E. (2021) Covid-19. Départements, tranches d’age: Qui est concerné par le rebond actuel de l’épidémie?
https://www.ouest-france.fr/sante/virus/coronavirus/covid-19-departements-tranches-d-age-qui-est-concerne-par-le-rebond-actuel-de-l-epidemie-390a4d7a-3d74-11ec-ae19-24374b064259
[25]
Zhao, J., Yang, Y., Huang, H., Li, D., Gu, D., Lu, X., et al. (2021) Relationship between the ABO Blood Group and the COVID-19 Susceptibility. Clinical Infectious Diseases, 73, 328-331. https://pubmed.ncbi.nlm.nih.gov/32750119/
[26]
Stussi, G., Huggel, K., Lutz, H.U., Schanz, U., Rieben, R. and Seebach, J.D. (2005) Isotype Specific Detection of ABO Blood Group Antibodies Using a Novel Flow Cytometric Method. British Journal of Haematology, 130, 954-963.
https://pubmed.ncbi.nlm.nih.gov/16156865/
[27]
Charlton, C., Kanji, J., Tran, V., Kus, J., Gubbay, J., Osiowy, C., et al. (2021) Guide de dépistage sérologique du SRAS-CoV-2 en laboratoire clinique. Relevé des maladies transmissibles au Canada, 47, 187-200.
https://www.canada.ca/fr/sante-publique/services/rapports-publications/releve-maladies-transmissibles-canada-rmtc/numero-mensuel/2021-47/numero-4-avril-2021/guide-laboratoires-depistage-sras-cov-2.html
[28]
Chaves, D.G., Takahashi, R.H.C., Campelo, F., da Silva Malta, M.C.F., de Oliveira, I.R., Barbosa-Stancioli, E.F., et al. (2022) SARS-CoV-2 IgG Seroprevalence among Blood Donors as a Monitor of the COVID-19 Epidemic, Brazil. Emerging Infectious Diseases, 28, 734-742. https://pubmed.ncbi.nlm.nih.gov/35180375/
[29]
Institut Pasteur (2021) Covid-19, un an après: Persistance des anticorps protecteurs et réduction significative du risque de réinfection.
https://www.pasteur.fr/fr/espace-presse/documents-presse/covid-19-apres-persistance-anticorps-protecteurs-reduction-significative-du-risque-reinfection
[30]
Cervia, C., Nilsson, J., Zurbuchen, Y., Valaperti, A., Schreiner, J., Wolfensberger, A., et al. (2021) Systemic and Mucosal Antibody Responses Specific to SARS-CoV-2 during Mild versus Severe COVID-19. Journal of Allergy and Clinical Immunology, 147, 545-557.e9. https://doi.org/10.1016/j.jaci.2020.10.040
[31]
Liu, Y., Yan, L.M., Wan, L., Xiang, T.X., Le, A., et al. (2020) Viral Dynamics in Mild and Severe Cases of COVID-19. The Lancet Infectious Diseases, 20, 656-657.
https://doi.org/10.1016/S1473-3099(20)30232-2
[32]
Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z., et al. (2020) Clinical Course and Risk Factors for Mortality of Adult Inpatients with COVID-19 in Wuhan, China: A Retrospective Cohort Study. The Lancet, 395, 1054-1062.
https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(20)30566-3/fulltext
[33]
Yan, X., Chen, G., Jin, Z., Zhang, Z., Zhang, B., et al. (2022) Anti-SARS-CoV-2 IgG Levels in Relation to Disease Severity of COVID-19. Journal of Medical Virology, 94, 380-383. https://doi.org/10.1002/jmv.27274
[34]
Diao, B., Wang, C., Tan, Y., Chen, X., Liu, Y., Ning, L., et al. (2020) Reduction and Functional Exhaustion of T Cells in Patients with Coronavirus Disease 2019 (COVID-19). Frontiers in Immunology, 11, Article No. 827.
https://doi.org/10.3389/fimmu.2020.00827
[35]
Westmeier, J., Paniskaki, K., Karaköse, Z., Werner, T., Sutter, K., Dolff, S., et al. (2020) Impaired Cytotoxic CD8+ T Cell Response in Elderly COVID-19 Patients. mBio, 11, e02243-20.
https://www.biorxiv.org/content/10.1101/2020.08.21.262329v1.full.pdf
[36]
Chen, G., Wu, D., Guo, W., Cao, Y., Huang, D., Wang, H., et al. (2020) Clinical and Immunological Features of Severe and Moderate Coronavirus Disease 2019. Journal of Clinical Investigation, 130, 2620-2629. https://doi.org/10.1172/JCI137244
[37]
Grifoni, A., Weiskopf, D., Ramirez, S.I., Mateus, J., Dan, J.M., Moderbacher, C.R., et al. (2020) Targets of T Cell, Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell, 181, 1489-501.e15.
https://pubmed.ncbi.nlm.nih.gov/32473127/
[38]
Gong, F., Dai, Y., Zheng, T., Cheng, L., Zhao, D., Wang, H., et al. (2020) Peripheral CD4+ T Cell Subsets and Antibody Response in COVID-19 Convalescent Individuals. Journal of Clinical Investigation, 130, 6588-6599.
https://doi.org/10.1172/JCI141054