One-dimensional photonic crystals (1D PhCs) have a unique ability to control the propagation of light waves, however certain classes of 1D oxides remain relatively unexplored for use as PhCs. Specifically, there has not been a comparative study of the three different 1D PhC structures to compare the influence of layer thickness, number, and refractive index on the ability of the PhCs to control light transmission. Herein, we use the transfer matrix method (TMM) to theoretically examine the transmission of 1D PhCs composed of layers of TiO2/SiO2, TiO2/SnO2, SiO2/SnO2, and combinations of the three with various top and bottom layer thicknesses to cover a substantial region of the electromagnetic spectrum (UV to NIR). With increasing layer numbers for TiO2/SiO2 and SiO2/SnO2, the edges became sharper and wider and the photonic bandgap width increased. Moreover, we demonstrated that PhCs with significantly thick TiO2/SiO2 layers had a high transmittance for a wide bandgap, allowing for wide-band optical filter applications. These different PhC architectures could enable a variety of applications, depending on the properties needed.
References
[1]
Vlasov, Y.A., O’Boyle, M., Hamann, H.F. and McNab, S.J. (2005) Active Control of Slow Light on a Chip with Photonic Crystal Waveguides. Nature, 438, 65-69. https://doi.org/10.1038/nature04210
[2]
Liu, W., Ma, H. and Walsh, A. (2019) Advance in Photonic Crystal Solar Cells. Renewable and Sustainable Energy Reviews, 116, Article ID: 109436. https://doi.org/10.1016/j.rser.2019.109436
[3]
Söllner, I., Mahmoodian, S., Hansen, S.L., Midolo, L., Javadi, A., Kiršanskė, G., Pregnolato, T., El-Ella, H., Lee, E.H., Song, J.D., Stobbe, S. and Lodahl, P. (2015) Deterministic Photon-Emitter Coupling in Chiral Photonic Circuits. Nature Nanotechnology, 10, 775-778. https://doi.org/10.1038/nnano.2015.159
[4]
Barik, S. and Karasahin, A. (2018) A Topological Quantum Optics Interface. Science, 359, 666-668. https://doi.org/10.1126/science.aaq0327
[5]
Noda, S., Chutinan, A. and Imada, M. (2000) Trapping and Emission of Photons by a Single Defect in a Photonic Bandgap Structure. Nature, 407, 608-610. https://doi.org/10.1038/35036532
[6]
Deng, K. and Li, L. (2020) Optical Design in Perovskite Solar Cells. Small Methods, 4, Article ID: 1900150. https://doi.org/10.1002/smtd.201900150
[7]
Benisty, H., Chelnokov, A., Combrié, S. and Checoury, X. (2006) Recent Advances toward Optical Devices in Semiconductor-Based Photonic Crystals. Proceedings of the IEEE, 94, 997-1023. https://doi.org/10.1109/JPROC.2006.873441
[8]
Almeida, R. and Portal, S. (2003) Photonic Band Gap Structures by Sol-Gel Processing. Current Opinion in Solid State and Materials Science, 7, 151-157. https://doi.org/10.1016/S1359-0286(03)00045-7
[9]
Betancur, R., Romero-Gomez, P., Martinez-Otero, A., Elias, X., Maymó, M. and Martorell, J. (2013) Transparent Polymer Solar Cells Employing a Layered Light-Trapping Architecture. Nature Photonics, 7, 995-1000. https://doi.org/10.1038/nphoton.2013.276
[10]
Bermel, P., Luo, C., Zeng, L., Kimerling, L.C. and Joannopoulos, J.D. (2007) Improving Thin-Film Crystalline Silicon Solar Cell Efficiencies with Photonic Crystals. Optics Express, 15, 16986-17000. https://doi.org/10.1364/OE.15.016986
[11]
Zaky, Z.A. and Aly, A.H. (2020) Theoretical Study of a Tunable Low-Temperature Photonic Crystal Sensor Using Dielectric-Superconductor Nanocomposite Layers. Journal of Superconductivity and Novel Magnetism, 33, 2983-2990. https://doi.org/10.1007/s10948-020-05584-1
[12]
Mamri, B. and Barkat, O. (2019) Design of a Selective Filter Based on One-Dimensional Superconductor Photonic Crystal. Journal of Superconductivity and Novel Magnetism, 32, 3397-3405. https://doi.org/10.1007/s10948-019-5118-0
[13]
Deng, K. and Li, L. (2020) Optical Design in Perovskite Solar Cells. Small Methods, 4, Article ID: 1900150. https://doi.org/10.1002/smtd.201900150
[14]
Wu, H. and Kuang, Y. (2022) Propagation Characteristics of Flexural Wave in One-Dimensional Phononic Crystals Based on Lattice Dynamics Model. Journal of Applied Mathematics and Physics, 10, 1416-1431. https://doi.org/10.4236/jamp.2022.105100
[15]
Hui, R. (2019) Introduction to Fiber-Optic Communications. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-12-805345-4.00001-9
[16]
Lourtioz, J.M., Benisty, H., Berger, V., Gérard, J.-M., Maystre, D. and Tchelnokov, A. (2006) Photonic Crystals: Towards Nanoscale Photonic Devices. Physics Today, 59, Article No. 54. https://doi.org/10.1063/1.2349736
[17]
Robinson, S. and Nakkeeran, R. (2013) Photonic Crystal Ring Resonator Based Optical Filters. IntechOpen, London. https://doi.org/10.5772/54533
[18]
Singh, S.P. and Dipanjan, D. (2017) Dense and Narrow Stop-Bands Structure Based on One Dimensional Photonic Crystal Filter for Optical Communication. International Journal of Engineering Science and Computing, 7, 15312-15316.
[19]
Omid, B., Abdolrahim, B. and Ali, B. (2019) Disorder Effect on the Transmission of Second Harmonic Waves in One-Dimensional Periodically Poled LiTaO3. Journal of Modern Physics, 10, 432-442. https://doi.org/10.4236/jmp.2019.104028
[20]
Tanaka, H., Takai, I., Fujikawa, H. and Iizuka, H. (2018) Nearly Polarization-Independent Angular Filters Consisting of One-Dimensional Photonic Crystals Realized in the Visible Region. Journal of Lightwave Technology, 36, 2517-2523. https://doi.org/10.1109/JLT.2018.2819943
[21]
Liu, L., Dong, P., Liu, R., Zhou, Q., Wang, X., Yi, G. and Cheng, B. (2005) Preparation and Self-Assembly of Uniform TiO2/SiO2 Composite Submicrospheres. Journal of Colloid and Interface Science, 288, 1-5. https://doi.org/10.1016/j.jcis.2004.11.048
[22]
Choi, D.H., Nam, S., Jung, K. and Moon, J.H. (2018) 2D Photonic Crystal Nanodisk Array as Electron Transport Layer for Highly Efficient Perovskite Solar Cells. Nano Energy, 56, 365-372. https://doi.org/10.1016/j.nanoen.2018.11.050
[23]
Murthy, S., Effiong, P. and Fei, C.C. (2020) Metal Oxide Nanoparticles in Biomedical Applications. In: Al-Douri, Y., Ed., Metal Oxide Powder Technologies, Elsevier, Amsterdam, 233-251. https://doi.org/10.1016/B978-0-12-817505-7.00011-7
[24]
Katsidis, C.C. and Siapkas, D.I. (2002) General Transfer-Matrix Method for Optical Multilayer Systems with Coherent, Partially Coherent, and Incoherent Interference. Applied Optics, 41, 3978-3987. https://doi.org/10.1364/AO.41.003978
[25]
Markoš, P. and Soukoulis, C.M. (2008) Wave Propagation: From Electrons to Photonic Crystals and Left-Handed Materials. Princeton University Press, Princeton. https://doi.org/10.1515/9781400835676
[26]
Pérez, E.X. (2007) Design, Fabrication and Characterization of Porous Silicon Multilayer Optical Devices. Universitat Rovira i Virgili, Tarragona.
[27]
John, S. (1987) Strong Localization of Photons in Certain Disordered Dielectric Superlattices. Physical Review Letters, 58, 2486-2489. https://doi.org/10.1103/PhysRevLett.58.2486
[28]
Baba, T. (2008) Slow Light in Photonic Crystals. Nature Photonics, 2, 465-473. https://doi.org/10.1038/nphoton.2008.146
[29]
Sankir, N.D. and Sankir, M. (2017) Printable Solar Cells. John Wiley & Sons, New York. https://doi.org/10.1002/9781119283720
[30]
Kumar, A., Singh, P., Pal, K., Kumar, N. and Thapa, K.B. (2020) Broadband Reflector of 1D Photonic Crystal Containing TiO2/SiO2 Material at Visible Region. AIP Conference Proceedings, 2220, Article ID: 020068. https://doi.org/10.1063/5.0002138
[31]
Saravanan, S. and Dubey, R.S. (2021) Ultraviolet and Visible Reflective TiO2/SiO2 Thin Films on Silicon Using Sol-Gel Spin Coater. Nanosystems: Physics, Chemistry, Mathematics, 12, 311-316. https://doi.org/10.17586/2220-8054-2021-12-3-311-316
[32]
Sedrati, H., Benachour, M., Dehdouh, H. and Bensaha, R. (2020) Tuning of the Stop-Band Position in the Visible Range of SiO2/TiO2 Bragg Reflectors by Doping TiO2 with Transition Metals. Optik, 208, Article ID: 164098. https://doi.org/10.1016/j.ijleo.2019.164098
[33]
álvarez, S.E.H. and Segovia-Chaves, F. (2019) Transmittance Spectrum TM in a Photonic Crystal TiO2/SiO2. Optik, 186, 369-373. https://doi.org/10.1016/j.ijleo.2019.04.054
[34]
Dalmis, R., Azem, N.F.A., Birlik, I. and Celik, E. (2019) SiO2/TiO2 One-Dimensional Photonic Crystals Doped with Sm and Ce Rare-Earth Elements for Enhanced Structural Colors. Applied Surface Science, 475, 94-101. https://doi.org/10.1016/j.apsusc.2018.12.234
[35]
Hinczewski, D., Hinczewski, M., Tepehan, F. and Tepehan, G. (2005) Optical Filters from SiO2 and TiO2 Multi-Layers Using Sol-Gel Spin Coating Method. Solar Energy Materials and Solar Cells, 87, 181-196. https://doi.org/10.1016/j.solmat.2004.07.022
[36]
Das, S. and Jayaraman, V. (2014) SnO2: A Comprehensive Review on Structures and Gas Sensors. Progress in Materials Science, 66, 112-255. https://doi.org/10.1016/j.pmatsci.2014.06.003
[37]
Lopez-Torres, D., Elosua, C., Villatoro, J., Zubia, J., Rothhardt, M., Schuster, K. and Arregui, F.J. (2017) Enhancing Sensitivity of Photonic Crystal Fiber Interferometric Humidity Sensor by the Thickness of SnO2 Thin Films. Sensors and Actuators B: Chemical, 251, 1059-1067. https://doi.org/10.1016/j.snb.2017.05.125
[38]
Chen, S.L., Wang, A.J., Dai, C., Benziger, J.B. and Liu, X.C. (2014) The Effect of Photonic Band Gap on the Photo-Catalytic Activity of nc-TiO2/SnO2 Photonic Crystal Composite Membranes. Chemical Engineering Journal, 249, 48-53. https://doi.org/10.1016/j.cej.2014.03.075
[39]
Ramos, F.J., Oliva-Ramírez, M., Nazeeruddin, M.K., Graetzel, M., Gonzalez-Elipe, A.R. and Ahmad, S. (2016) Light Management: Porous 1-Dimensional Nanocolumnar Structures as Effective Photonic Crystals for Perovskite Solar Cells. Journal of Materials Chemistry A, 4, 4962-4970. https://doi.org/10.1039/C5TA08743K
[40]
Tran, T.N.L. (2019) Tin Dioxide-Based Photonic Glass-Ceramics. Ph.D. Dissertation, University of Trento, Trento.