全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

On the Different Ways to Handle the Trend of Disease Risk in Genetic Association Tests

DOI: 10.4236/ojs.2022.124031, PP. 521-531

Keywords: Association, Chi-Square, Trend Test, SNP, Genotype

Full-Text   Cite this paper   Add to My Lib

Abstract:

Genetic association studies usually apply the simple chi-square (χ2)-test for testing association between a single-nucleotide polymorphism (SNP) and a particular phenotype, assuming the genotypes and phenotypes are independent. So, the conventional χ2-test does not consider the increased risk of an individual carrying the increasing number of disease responsible allele (a particular genotype). But, the association tests should be performed with the consideration of this disease risk according to the mode of inheritance (additive, dominant, recessive). Practical demonstration of the two possible methods for considering such order or trends in contingency tables of genetic association studies using SNP genotype data is the purpose of this paper. One method is by pooling the genotypes, and the other is scoring the individual genotypes, based on the disease risk according to the inheritance pattern. The results show that the p-values obtained from both the methods are similar for the dominant and recessive models. The other important features of the methods were also extracted using the SNP genotype data for different inheritance patterns.

References

[1]  Beck, T., Shorter, T. and Brookes, A.J. (2020) GWAS Central: A Comprehensive Resource for the Discovery and Comparison of Genotype and Phenotype Data from Genome-Wide Association Studies. Nucleic Acids Research, 48, D933-D940.
https://doi.org/10.1093/nar/gkz895
[2]  Svishcheva, G.R., Belonogova, N.M., Zorkoltseva, I.V., Kirichenko, A.V. and Axenovich, T.I. (2019) Gene-Based Association Tests Using GWAS Summary Statistics. Bioinformatics, 35, 3701-3708.
https://doi.org/10.1093/bioinformatics/btz172
[3]  Cao, X., Wang, X., Zhang, S., and Sha, Q. (2022) Gene-Based Association Tests Using GWAS Summary Statistics and Incorporating eQTL. Scientific Reports, 12, Article No. 3553.
https://doi.org/10.1038/s41598-022-07465-0
[4]  Wang, Y., Li, Y., Hao, M., Liu, X., Zhang, M., Wang, J., Xiong, M., Shugart, Y.Y., and Jin, L. (2019) Robust Reference Powered Association Test of Genome-Wide Association Studies. Frontiers in Genetics, 10, Article No. 319.
https://doi.org/10.3389/fgene.2019.00319
[5]  Uffelmann, E., Huang, Q.Q., Munung, N.S., de Vries, J., Okada, Y., Martin, A.R., Martin, H.C., Lappalainen, T. and Posthuma, D. (2021) Genome-Wide Association Studies. Nature Reviews Methods Primers, 1, Article No. 59.
https://doi.org/10.1038/s43586-021-00056-9
[6]  Boua, P.R., Brandenburg, J.T., Choudhury, A., Sorgho, H., Nonterah, E.A., Agongo, G., Asiki, G., Micklesfield, L., Choma, S., Gómez-Olivé, F.X., Hazelhurst, S., Tinto, H., Crowther, N.J., Mathew, C.G., Ramsay, M., AWI-Gen Study and the H3Africa Consortium (2022) Genetic Associations with Carotid Intima-Media Thickness Link to Atherosclerosis with Sex-Specific Effects in Sub-Saharan Africans. Nature Communications, 13, Article No. 855.
https://doi.org/10.1038/s41467-022-28276-x
[7]  Tangdén, T., Gustafsson, S., Rao, A.S. and Ingelsson, E. (2022) A Genome-Wide Association Study in a Large Community-Based Cohort Identifies Multiple Loci Associated with Susceptibility to Bacterial and Viral Infections. Scientific Reports, 12, Article No. 2582.
https://doi.org/10.1038/s41598-022-05838-z
[8]  Loos, R.J.F. (2020) 15 Years of Genome-Wide Association Studies and No Signs of Slowing down. Nature Communications, 11, Article No. 5900.
https://doi.org/10.1038/s41467-020-19653-5
[9]  Patron, J., Serra-Cayuela, A., Han, B., Li, C. and Wishart, D.S. (2019) Assessing the Performance of Genome-Wide Association Studies for Predicting Disease Risk. PLOS ONE, 14, Article ID: e0220215.
https://doi.org/10.1371/journal.pone.0220215
[10]  Bush, W.S. and Moore, J.H. (2012) Chapter 11: Genome-Wide Association Studies. PLOS Computational Biology, 8, Article ID: e1002822.
https://doi.org/10.1371/journal.pcbi.1002822
[11]  Setu, T.J. and Basak, T. (2021) An Introduction to Basic Statistical Models in Genetics. Open Journal of Statistics, 11, 1017-1025.
https://doi.org/10.4236/ojs.2021.116060
[12]  Basak, T. and Roy, N. (2022) A Preliminary Outline of the Statistical Inference Process in Genetic Association Studies. Open Journal of Statistics, 12, 200-209.
https://doi.org/10.4236/ojs.2022.122014
[13]  Plackett, R.L. (1983) Karl Pearson and the Chi-Squared Test. International Statistical Review, 51, 59-72.
https://doi.org/10.2307/1402731
https://www.jstor.org/stable/1402731
[14]  Moore, J.H., Hahn, L.W., Ritchie, M.D., Thornton, T.A. and White, B.C. (2004) Routine Discovery of Complex Genetic Models using Genetic Algorithms. Applied Soft Computing, 4, 79-86.
https://doi.org/10.1016/j.asoc.2003.08.003
[15]  Cooper, D.N., Krawczak, M., Polychronakos, C., Tyler-Smith, C. and Kehrer-Sawatzk, H. (2013) Where Genotype Is Not Predictive of Phenotype: Towards an Understanding of the Molecular Basis of Reduced Penetrance in Human Inherited Disease. Human Genetics, 132, 1077-1130.
https://doi.org/10.1007/s00439-013-1331-2
[16]  Ford, D., Easton, D.F., Stratton, M., Narod, S., Goldgar, D., Devilee, P., Bishop, D.T., Weber, B., Lenoir, G., Chang-Claude, J., Sobol, H., Teare, M.D., Struewing, J., Arason, A., Scherneck, S., Peto, J., Rebbeck, T.R., Tonin, P., Neuhausen, S., Barkardottir, R., Eyfjord, J., Lynch, H., Ponder, B.A.J., Gayther, S.A., Birch, J.M., Lindblom, A., Stoppa-Lyonnet, D., Bignon, Y., Borg, A., Hamann, U., Haites, N., Scott, R.J., Maugard, C.M., Vasen, H., Seitz, S., Cannon-Albright, L.A., Schofield, A., Zelada-Hedman, M. and The Breast Cancer Linkage Consortium (1998) Genetic Heterogeneity and Penetrance Analysis of the BRCA1 and BRCA2 Genes in Breast Cancer Families. American Journal of Human Genetics, 62, 676-689.
https://doi.org/10.1086/301749
[17]  Ziegler, A. and Konig, I.R. (2010) A Statistical Approach to Genetic Epidemiology: Concepts and Applications. 2nd Edition, Wiley-VCH, Weinheim.
https://doi.org/10.1002/9783527633654
[18]  Gong, G., Hannon, N. and Whittemore, A.S. (2010) Estimating Gene Penetrance from Family Data. Genetic Epidemiology, 34, 373-381.
https://doi.org/10.1002/gepi.20493
[19]  Clarke, G.M., Anderson, C.A., Pettersson, F.H., Cardon, L.R., Morris, A.P. and Zondervan, K.T. (2011) Basic Statistical Analysis in Genetic Case-Control Studies. Nature Protocols, 6, 121-133.
https://doi.org/10.1038/nprot.2010.182
[20]  Lewis, C.M. (2002) Genetic Association Studies: Design, Analysis and Interpretation. Briefings in Bioinformatics, 3, 146-153.
https://doi.org/10.1093/bib/3.2.146
[21]  Fang, Y., Wang, Y. and Sha, N. (2009) Armitage’s Trend Test for Genome-Wide Association Analysis: One-Sided or Two-Sided? BMC Proceedings, 3, Article No. Article No. S37.
https://doi.org/10.1186/1753-6561-3-S7-S37
[22]  Armitage, P. (1955) Tests for Linear Trends in Proportions and Frequencies. Biometrics, 11, 375-386.
https://doi.org/10.2307/3001775
https://www.jstor.org/stable/3001775
[23]  Cochran, W.G. (1954) Some Methods for Strengthening the Common χ2 Test. Biometrics, 10, 417-451.
https://doi.org/10.2307/3001616
https://www.jstor.org/stable/3001616

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133